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Introduction

This book has been designed to be a self-contained text which covers all the material, both Pure

and Applied, required for the Cambridge Pre-U course in Mathematics (Principal) 9794. It in-

cludes the most recent adjustments to the specification, introduced for examination from 2016.

Hitherto, no single text has fully covered all the required material in the desired manner.

This book has been prepared in four Parts, covering (in order) the Pure Mathematics, Mechanics

and Probability aspects of the course, followed by Problem-solving. One of the important facets

of a linear course, such as the Pre-U, is the interconnectivity of the material. This does lead to

a design problem for a textbook, since there is no clear order in which the material must be pre-

sented; increasingly, different topics in the course rely on each other. The order of presentation

of the Pure Mathematics material largely follows the order used in the Mathematics Department

at Rugby School and develops the material progressively. The final three chapters in that Part,

on Vectors, Complex Numbers and Numerical Methods are (to a larger extent) free-standing,

and can be taught earlier in the course than their position in the Part might suggest, particularly

the chapter on Numerical Methods. The Part on Mechanics does depend on the student hav-

ing an understanding of vectors and a degree of sophistication with calculus, and so probably

shouldn’t be presented at the start of the course. The Part on Probability is self-contained to a

large degree, and can be presented early on in a course of study, with the possible exception

of the chapter on Permutations and Combinations. Experience shows that, while there are few

facts in this topic, their application to problem-solving asks for a degree of sophistication from

the student that is more likely to be found during the second half of the course.

At various stages in the book, attention is drawn to facts and information that are either cru-

cial to an understanding of the topic, or else merely interesting, or in the nature of extension

material. The different types of information is presented in boxes:

• Key Facts The information in these boxes is crucial, and students would be well-advised to

learn them!

The formula for the sum of the first n integers is

1 + 2 + 3 + · · ·+n =
n∑

r=1

r = 1
2n(n+ 1)

Key Fact 3.1 The Gauss Sum

• Food for Thought While not essential to the course, information provided in these boxes is

related to the material at hand, and should be informative to the interested reader.

xiii



Unlike GPs, APs do not have a sum to infinity. The infinite Gauss sum

1 + 2 + 3 + 4 + · · · =
∞∑
r=1

r

has no limit, since the so-called partial sums

1 + 2 + 3 + · · ·+n = 1
2n(n+ 1)

get bigger without limit as n increases.

Food For Thought 3.1

• For Interest The information in these boxes is provided as a matter of interest, and is not

essential to an understanding of the course. The enthusiastic reader should find these

boxes interesting, but they can be omitted if desired.

There are many pages on the Internet that will tell you that

1 + 2 + 3 + · · · =
∞∑
r=1

r = − 1
12

These should be treated with caution. They contain arguments which are similar to

Since∞+ 1 = ∞ = ∞+ 0 , we deduce that 1 = 0 .

What is bizarre is that many interesting results in Mathematical Physics can be de-

duced by using exactly this ‘identity’. The solution to this apparent weirdness can be

found in the details of a famous function call the Riemann zeta function.

For Interest

Finally, any section which is particularly difficult, or slightly beyond the syllabus, is indicated

by a bar in the margin, as shown here. I make no apologies for adding extra and demanding

material to this book. The aim of the Pre-U is to encourage mathematical thought and problem-

solving, and the aim of these extra entries is to show the interested student ‘what happens

next’.

Problem-solving is a particular feature of the Pre-U — the ‘D1 tie-breaker’ questions currently

at the end of each paper require a degree of mental flexibility. The fourth Part, and last chapter,

of this book contains a number of problems, and discusses a variety of solution techniques for

each. It is important that the student develops an awareness of the possibility of there being

more than one solution to a problem, so that they have the ability to handle an unusual question

which might require a different technique to solve than the more standard questions.

Exercises are given at all stages of the book, and each set of questions provides a range of

difficulty to train all students and to challenge the more able. For summary purposes, Revision

Exercise sections are included every three chapters, again summarising the techniques learnt

in each set of three chapters at a variety of levels. At all stages, harder questions are marked

with an asterisk �. Answers to all questions (where an answer is appropriate) are provided in the

Appendix.

The Cambridge Sixth Term Examination Paper, being used as it is for admission to Mathematics

courses at a number of Universities — Cambridge in particular — provides an excellent set of

problems which stretch the student beyond the usual level of difficulty required by Pre-U ques-

tions. A number of STEP questions are included in each set of Revision Exercises, roughly one

question per chapter of the book. To help (and encourage!) the student, full solutions to these

STEP questions are given in Chapter A2 in the Appendix.



The List of Formulae MF20 is the official list of formulae for both the Pre-U Mathematics and

Further Mathematics courses. Since it covers both courses, it necessarily contains much infor-

mation that is not needed for the Single Mathematics qualification, which is the target of this

book. The final Appendix of this book contains a cut-down version of List MF20, and contains

only those formulae which are relevant to the Single Mathematics Pre-U. The fact that this cut-

down list is half the size of the full list reinforces the need for students to be familiar with these

formulae; finding the correct formula amongst a list containing twice as many results as needed

is a challenge made unnecessary if these formulae have already been learned!

Mark Hennings,

Rugby School,

June 2016.





Part 1

Pure Mathematics

1





1

Surds and Indices

In this chapter we will learn:

• how to manipulate expressions involving surds,

• how to manipulate expressions involving indices.

1.1 Types of Number

Modern Mathematics is built on the back of thousands of years of mathematical thought. Over

the centuries, mathematicians saw the need for ever more complicated ideas of number. It is

still important nowadays to be aware of the hierarchy of number types, since different mathe-

matical ideas and argumchents can be applied at different levels. We start by setting out the

fundamental different types of number that we will encounter:

• The most fundamental numbers are those used for counting: the positive whole numbers

1 , 2 , 3 , 4 , . . . These are called the natural numbers. The set of all natural numbers is de-

noted by the special symbol N, so that

N =
{
1 , 2 , 3 , 4, . . .

}

• The natural numbers are sufficient to count (sheep, coins, etc.), and can be used to add,

but they are insufficient if we want to be able to subtract (as Alice told the Red Queen, ‘nine

from eight I can’t, you know’). To be able to do subtraction neatly, the number zero and

negative whole numbers were introduced, giving us the integers: . . . ,−3 , −1 , 0 , 1 , 2 , 3 , . . ..
The set of all the integers is denoted by the special symbol Z (‘Z’ for Zahl, the German for

‘number’), so that

Z =
{
. . . , −4 , −3 , −2 , −1 , 0 , 1 , 2 , 3 , 4 , . . .

}
The integers are a very important set of numbers. As well as being able to add and subtract

integers, multiplication is possible, as is factorisation into primes. Studying the properties

of the integers has generated some of the richest areas of modern mathematics.

• The rational numbers are those which can be expressed as fractions of integers in the

form
p
q , where p and q are integers, and q � 0. The set of rational numbers is denoted by

the special symbol Q (‘Q’ for quotient), so that

Q =
{
p
q

∣∣∣p,q ∈Z , q � 0
}

3
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We are using a standard notation to describe sets here. A set can be written in the form{
x
∣∣∣A}

where x is an expression for a number in the set, and A is a condition, or set of condi-

tions, that specify the types of number that are permitted. The vertical bar | (sometimes

a colon is used) should be read as ‘such that’. Thus the formula for Q given above can

be read as ‘the set of numbers
p
q such that p and q are integers where q is non-zero’.

For Interest

• Not all numbers are rational, however. Important numbers, like
√

2 and π, cannot be written

as fractions. Numbers that cannot be expressed as fractions are called irrational numbers,

and the irrational and rational numbers together form the real numbers. The collection of

all real numbers is denoted by R. Actually what is meant by a number here is quite a

difficult question: integers and rationals have a fairly concrete existence which is founded

in our experience, but irrational numbers are more elusive. The Pythagorean schools of

mathematics in Ancient Greece thought that all numbers should be fractions, and that

numbers which were not fractions were irrational in both senses of the word! We will have

to be content with thinking that numbers are quantities that can have a place found for

them along a number line.

• Eventually, we will want to move off the number line and study numbers that do things that

real numbers cannot. In particular, we will want to introduce the square root of −1, denoted

i. Numbers of the form a+ ib, where a,b are real, are called complex numbers, and the set

of all complex numbers is denoted C.

It is worth observing that:

N ⊆ Z ⊆ Q ⊆ R ⊆ C .

Each of our special sets contains all the preceding special sets as a subset. A Venn diagram for

these sets would be five concentric circles!

When we cannot express a number as a fraction, we try to express it in decimals. Rational num-

bers either have decimal expansions which terminate

7
10 = 0.7 3

16 = 0.1875 11
20 = 0.55

or they have recurring decimal expansions, i.e. ones which eventually start repeating in a regular

pattern:
3

11 = 0.2̇7̇ = 0.27272727 . . . 8
15 = 0.53̇ = 0.533333 . . .

7
17 = 0.4̇117647058823529̇ = 0.411764705882352941176 . . .

The converse is true: any terminating or recurring decimal describes a rational number. It is

therefore easy to write down irrational numbers, by constructing decimals which definitely do

not recur:

0.101001000100001000001000000100 . . .

but it is more interesting to be able to find out whether particular numbers are irrational or not.

Example 1.1.1. Show that
√

2 i.e. the square root of 2 is irrational.

Suppose that
√

2 was rational. Then we could write
√

2 = a
b as a fraction. We can

assume that the fraction is in its lowest terms, so that the positive integers a,b have

no common factor. Squaring the formula for
√

2 and multiplying by b2 gives

a2 = 2b2 ,

and hence a2 is an even integer. But this can only happen when a is even. Thus a = 2c
for some integer c. But then 2b2 = (2c)2 = 4c2, and hence

b2 = 2c2 .

4
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But this implies that b2 is even, and so b is even.

We have come to the conclusion that a and b, which have no common factor, are both

even, and hence both divisible by 2. The only way out of this impasse is to deduce

that our original idea, that
√

2 was rational, is not true. Thus we deduce that
√

2 is

irrational.

This is an example of an important method of argument: Proof by Contradiction. If assuming a

fact leads to nonsense, we may deduce that our original assumption was incorrect.

Exercise 1A

1. It is easy to ‘place’ a fraction on the number line. For example, 4 2
3 is two-thirds of the way

from 4 to 5. How can we be sure about where to place
√

2? Can we be sure it exists? Were

the ancient Greeks right to be worried?

2. Do there exist real numbers which possess two or more different decimal expansions? If so,

which?

3. Express 0.1̇23̇ and 0.22̇7̇ as fractions.

4. If a real number x has a recurring decimal expansion which comprises a sequence of n
repeated digits (so that n = 3 for x = 0.12̇85̇), show that (10n−1)x has a terminating decimal

expansion, and hence that x is rational.

5∗. How many remainders are possible when dividing an integer by 17? Show that any fraction

with denominator equal to 17 has a recurring decimal expansion. Extend the argument to

deal with all rational numbers.

1.2 Surds

Square roots, or surds, were the first examples of irrational numbers to be identified.

Irrational numbers were considered (ab)surd.

For Interest

It is important to work with surds without using a calculator. Except to a limited extent (the

most common calculators can work with surds
√
n, provided that the integer n is not too big),

calculators can only handle the decimal expansion of a surd, and then only to 9 or so decimal

places. Using a calculator inevitably means, therefore, that answers obtained will be inexact.

They may be very accurate, but they will not be perfect. It is important to be able to work without

reference to a calculator when possible. The main properties of surds are these:

• For any x ≥ 0, the number
√
x is the non-negative (positive or zero) square root

of x.

•
√
xy =

√
x ×√y for any x,y ≥ 0.

•
√

x
y =

√
x√
y for any x ≥ 0, y > 0.

Key Fact 1.1 Properties of Surds

5
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The result for
√
xy and

√
x
y can be seen, because

(√
x ×√y

)
×
(√

x ×√y
)

=
(√

x ×
√
x
)
×
(√

y ×√y
)

= x × y = xy

and so
√
xy =

√
x ×√y. Moreover, since x

y × y = x, we have

√
x
y ×
√
y =

√
x

and hence
√

x
y =

√
x√
y .

These results can be used in a variety of ways to establish exact identities between surds.

Example 1.2.1. Simplify the following expressions:

a)
√

8, b)
√

75, c)
√

18×
√

2, d)

√
27√
3

,

e)
√

40×
√

2, f)
√

28 +
√

63, g)
√

5×
√

10, h) 3
√

2× 4
√

7.

(a)
√

8 =
√

4× 2 =
√

4×
√

2 = 2
√

2,

(b)
√

75 =
√

25× 3 =
√

25×
√

3 = 5
√

3,

(c)
√

18×
√

2 =
√

18× 2 =
√

36 = 6,

(d)

√
27√
3

=
√

27
3 =

√
9 = 3,

(e)
√

40×
√

2 =
√

40× 2 =
√

16× 5 =
√

16×
√

5 = 4
√

5,

(f)
√

28 +
√

63 =
√

4×
√

7 +
√

9×
√

7 = 2
√

7 + 3
√

7 = 5
√

7,

(g)
√

5×
√

10 =
√

5×
(√

5×
√

2
)

=
(√

5×
√

5
)
×
√

2 = 5
√

2,

(h) 3
√

2× 4
√

7 = 12
√

2× 7 = 12
√

14.

Surds can also be used to handle algebraic problems:

Example 1.2.2. Simplify the following expressions:

(a)
√
x5y2, (b)

√
x3yz2 ×

√
xy2, (c)

√
p5q√
p2q3

(a)
√
x5y2 =

√
x4y2 × x = x2y

√
x.

(b)
√
x3yz2 ×

√
xy2 =

√
x3yz2 × xy2 =

√
x4y3z2 = x2yz

√
y.

(c)

√
p5q√
p2q3

=

√
p5q
p2q3 =

√
p3

q2 =
√
p3
√
q2

=
p
√
p

q .

Example 1.2.3. Solve the simultaneous equations

y =
√
x y3 = 2x

We see that

2x = y3 =
√
x ×
√
x ×
√
x = x

√
x

x
√
x − 2x = 0

x(
√
x − 2) = 0

and hence either x = 0 or
√
x = 2, so either x = 0 or x = 4.

Similar rules can be applied to cube and higher roots.

6
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Example 1.2.4. Simplify the following expressions:

(a)
3
√

16, (b)
3
√

12× 3
√

18, (c)
5
√

1215.

(a)
3
√

16 = 3
√

8× 2 = 3
√

8× 3
√

2 = 2 3
√

2,

(b)
3
√

12× 3
√

18 = 3
√

12× 18 = 3
√

216 = 6,

(c)
5
√

1215 = 5
√

243× 5 = 5
√

243× 5
√

5 = 3 5
√

5.

We frequently want to remove a surd from the denominator of a fraction. This is done either by

cancelling the same surd in the numerator, or else by ‘multiplying top and bottom’ by a suitable

expression. This process is called rationalising the denominator.

• For any x > 0,
1√
x

= 1√
x
×
√
x√
x

=
√
x
x

and so
x√
x

=
√
x

• For any y ≥ 0,

1
x+
√
y = 1

x+
√
y ×

x−√y
x−√y =

x−√y
x2−y

Key Fact 1.2 Rationalising the Denominator

Note the use of the ‘Difference of Two Squares’ technique to rationalise the denominator when

the denominator was x +
√
y. Multiplying by

x−√y
x−√y does not change the value of the expression,

because this fraction is equal to 1.

Example 1.2.5. Write in simplified surd form:

(a) 1√
2

, (b) 6√
2

, (c)
3
√

2√
10

, (d) 1
3−
√

2

(a) 1√
2

= 1√
2
×
√

2√
2

=
√

2
2 ,

(b) 6√
2

= 3×2√
2

= 3
√

2,

(c)
3
√

2√
10

= 3
√

2√
5×
√

2
= 3√

5
= 3

√
5

5 ,

(d) 1
3−
√

2
= 1

3−
√

2
× 3+

√
2

3+
√

2
= 3+

√
2

7

Using the ‘Difference of Two Squares’ method to rationalise the denominator, as shown in Exam-

ple 1.2.5, is a surprisingly useful technique.

Example 1.2.6. Find a positive integer n such that
√
n+ 1−

√
n < 10−3.

Note that

0 <
√
n+ 1−

√
n =

(√
n+ 1−

√
n
)
×
√
n+1+

√
n√

n+1+
√
n

= 1√
n+1+

√
n
.

Now n+ 1 > n, and so
√
n+ 1 >

√
n, and hence

√
n+ 1 +

√
n > 2

√
n. This tells us that

0 <
√
n+ 1−

√
n < 1

2
√
n
,

and we see that
√
n+ 1 −

√
n < 10−3 will be true if 2

√
n ≥ 1000, and so if

n ≥ 5002(= 250000).

7
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Exercise 1B

1. Simplify the following:

a)
√

3×
√

3 b)
√

8×
√

2 c)
√

3×
√

12 d) 2
√

5× 3
√

5

e)
(
2
√

7
)2

f) 3
√
x × 3

√
x2y g)

4
√

125× 4
√

5 h)
(
2 4
√
x
)4

2. Simplify the following (assuming that x,y > 0):

a)
√

18 b)
√

45 c)
√

675 d)
√
x3y5

e)
√

2000 f)
3
√

250 g) 4
√

32x4y4 h)
√
x3 + 2x2y + xy2.

3. Simplify the following (assuming that x,y > 0):

a)
√

8 +
√

18 b)
√

20−
√

5 c) 2
√

20 + 3
√

45
d)
√
x3 +

√
xy2 e)

√
99 +

√
44−

√
11 f)

√
52−

√
13

g)
√

4x2 + 4xy + y2 −
√
x2 + 2xy + y2

4. Simplify the following:

a)

√
8√
2

b)

√
40√
20

c)

√
3√

48
d)

√
50√

200

e) 1√
5

f)
3
√

5√
3

g)
4
√

2√
12

h)
2
√

18
9
√

12

i) 1
2−
√

3
j) 1

3
√

5−5
k)

4
√

3
2
√

6+3
√

2
l) 12√

2+
√

3+
√

5

5. You are given that, correct to 12 decimal places,
√

26 = 5.099019513593. Find the value of√
650 correct to 10 decimal places.

6. Solve the simultaneous equations:

7x − (3
√

5)y = 9
√

5 (2
√

5)x + y = 34

7. Assuming that x > 0, show that

√
x√

x2+x+x
=
√
x + 1− x

√
x.

8∗. Assuming that x > 1, evaluate

1√
x+
√
x2−x
−
√

1−
√

1− x−1

9∗. Put the following numbers in ascending order: 7− 4
√

3, 8− 3
√

7, 9− 4
√

5, 10− 3
√

11.

1.3 Indices

When mathematicians started solving quadratic, cubic and quartic equations, they wrote ex-

pressions like xx, xxx and xxxx to denote the repeated product of a variable x with itself (just as

abc is the product of a, b and c). It was found to be more economical to use the notations x2, x3

and x4 instead, and so index notation was invented. However, index notation is not just a method

of writing expressions conveniently; it introduces a new method of thought about number and

algebra without which much of modern mathematics would be impossible.

1.3.1. Positive Indices

In general the symbol am stands for the result of multiplying m copies of a together:

am = a× a× · · · × a︸���������︷︷���������︸
m copies

This operation is described in words as ‘a raised to the mth power’, or ‘a to the power m’ or even

just ‘a to the m’. The number a is called the base, and the number m the index. For the present,

while a can be any number, m must be a positive integer. We shall extend consideration to nega-

tive indices below.

Expressions in index notation can be simplified, subject to a few simple rules:

8
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• am × an = am+n,

• am ÷ an = am−n, if m > n,

• (am)n = amn,

• (ab)m = ambm.

Key Fact 1.3 Rules for Positive Indices

• am × an = a× a× · · · × a︸���������︷︷���������︸
m copies

×a× a× · · · × a︸���������︷︷���������︸
n copies

= a× a× · · · × a︸���������︷︷���������︸
m+n copies

= am+n

• am ÷ an = a× a× · · · × a︸���������︷︷���������︸
m copies

÷a× a× · · · × a︸���������︷︷���������︸
n copies

= a× a× · · · × a︸���������︷︷���������︸
m−n copies

= am−n

• (am)n = a× a× · · · × a︸���������︷︷���������︸
m copies

×· · · × a× a× · · · × a︸���������︷︷���������︸
m copies︸�����������������������������������︷︷�����������������������������������︸

n brackets

= a× a× · · · × a︸���������︷︷���������︸
mn copies

= amn

• (ab)m = ab × ab × · · · × ab︸��������������︷︷��������������︸
m copies

= a× a× · · · × a︸���������︷︷���������︸
m copies

×b × b × · · · × b︸���������︷︷���������︸
m copies

= am × bm

It is important to remember that, until we meet logarithms, the last of these rules is the only rule

that can be applied to powers of different bases.

Example 1.3.1. Simplify (2a2b)3 ÷ 4a4b.

Applying the rules,

(2a2b)3 ÷ 4a4b = 23(a2)3b3 ÷ 4a4b = 8a6b3 ÷ 4a4b = 2a2b2

A common error is to write 23 × 35 = 68, multiplying the bases as well as adding the

indices. Avoid it!

For Interest

1.3.2. Zero and Negative Indices

The previous definition for am makes no sense if m is not a positive integer. Nevertheless it is

possible to extend the definition of am to allow m to be any integer (provided that a is non-zero).

If we look at the following table:

n 5 4 3 2 1
2n 32 16 8 4 2
3n 243 81 27 9 3

Every time the index n decreases by 1, the value of 2n halves, and the value of 3n is a third of its

previous value. It is natural to extend the process

n 5 4 3 2 1 0 −1 −2 −3
2n 32 16 8 4 2 1 1

2
1
4

1
8

3n 243 81 27 9 3 1 1
3

1
9

1
27

It seems that 20 and 30 should both be defined to be 1, while 2−m should be the same as 1
2m , and

3−m should be the same as 1
3m . This observation can be extended to any non-zero base a, and

the resulting extension enables the previous rules for positive integer indices to be extended to

general integer indices (and non-zero base).

9
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• am × an = am+n,

• am ÷ an = am−n,

• (am)n = amn,

• (ab)m = ambm,

• a0 = 1,

• a−m = 1
am

Key Fact 1.4 Rules for Integer Indices

To show that the rules for positive integer indices can be extended (for non-zero base) to all

integer indices, we need to check a number of cases. Here are two of them (m and n are positive

integers):

am × a−n = am × 1
an

=
1

an ÷ am =
1

an−m
= am−n (m < n) ,

(am)−n =
1

(am)n
=

1
amn = a−mn .

Example 1.3.2. Simplify the following:

(a) 4a2b × (3ab−1)−2, (b) 43 × 2−5, (c) (2xy2z3)2 ÷ (2x2y3z)

(a) 4a2b × (3ab−1)−2 = 4a2b × 3−2a−2b2 = 4
9b

3,

(b) 43 × 2−5 = (22)3 × 2−5 = 26 × 2−5 = 21 = 2,

(c) (2xy2z3)2 ÷ (2x2y3z) = 4x2y4z6 ÷ 2x2y3z = 2yz5.

Exercise 1C

1. Simplify the following, writing each answer as a power of 2:

a) 211 × (25)3 b) (23)2 × (22)3 c) 43 d) 82

e) 27×28

213 f) 22×23

(22)2 g) 42 ÷ 24 h) 2× 44 ÷ 83

2. Simplify the following:

a) a2 × a3 × a7 b) c7 ÷ c3 c) (e5)4

d) 5g5 × 3g3 e) (2a2)3 × (3a)2 f) (4x2y)2 × (2xy3)3

g) (6ac3)2 ÷ (9a2c5) h) (49r3s2)2 ÷ (7rs)3 i) (3h2)−2

j) ( 1
2 j
−2)−3 k) (3n−2)4 × (9n)−1 l) (2q−2)−2 ÷

(
4
q

)2

3. Solve the following equations:

a) 3x = 1
9 b) 5y = 1 c) 2z × 2z−3 = 32

d) 73x ÷ 7x−2 = 1
49 e) 4y × 2y = 8120 f) 3t × 9t+3 = 272

4. Write 83 × 4 as a power of 2.

5. Simplify

(
1√
3

)9
.

6. Solve the equation 35x+2

91−x = 274+3x

729 .

7. Why do we not need brackets when considering powers of powers: in other words, why is

am
n

equal to a(mn), and not to (am)n?

8∗. Which of 343
and 433

is bigger?

10
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1.3.3. Fractional Indices

Up to now, we have assumed that the rules for indices work for integer indices. What can we

deduce if we were to assume that the rules were still true for fractional indices? It would follow

that

(a
1
2 )2 = a

1
2×2 = a1 = a

for any positive a. Since a
1
2 squares to a, we deduce that a

1
2 is either

√
a or −

√
a. Just as with

surds, we define a
1
2 to be positive, so that a

1
2 =
√
a. More generally we can show that (a

1
m )m = a,

so that a
1
m = m

√
a for any positive integer m and a > 0 (while it is possible to take mth roots of

negative numbers when m is odd, it is simpler to restrict fractional indices to strictly positive

bases). Thus we can define the fractional power of any positive real number.

• a
1
m = m

√
a, • a

m
n = ( n

√
a)m = n

√
am.

Key Fact 1.5 Rules for Fractional Indices

With these definitions, it should be noted that the rules for integer indices now hold for all frac-

tional indices (and positive bases).

Example 1.3.3. Simplify the following:

(a) 16−
3
4 , (b) (2 1

4 )
1
2 , (c)

(2x2y2)−
1
2

(2xy−2)
3
2

(a) 16−
3
4 = (24)−

3
4 = 2−3 = 1

8 ,

(b) (2 1
4 )

1
2 = ( 9

4 )
1
2 = 3

2 ,

(c)
(2x2y2)−

1
2

(2xy−2)
3
2

= 2−
1
2 x−1y−1

2
3
2 x

3
2 y−3

= 2−2x−
5
2 y2 = y2

4x
5
2

Exercise 1D

1. Evaluate the following:

a) 25
1
2 b) 36

1
2 c) 81

1
4 d) 16−

1
4

e) 1000−
1
3 f) 27

1
3 g) 64

2
3 h) 125−

4
3

i) 4
3
2 j) 27

4
3 k) 32

3
5 l) 42 1

2

m) 10000−
3
4 n) ( 1

125 )−
4
3 o) (3 3

8 )
2
3 p) (2.25)−

1
2

2. Simplify the following expressions:

a) a
1
3 × a 5

3 b) 3b
1
2 × 4b−

3
2 c) 6c

1
4 × (4c)

1
2

d) (d2)
1
3 ÷ (d

1
3 )2 e) (2x

1
2 )6 × ( 1

2x
3
4 )4 f) (24e)

1
3 ÷ (3e)

1
3

g)
(5p2q4)

1
3

(25pq2)−
1
3

h) (m3n)
1
4 × (8mn3)

1
3 i)

(2x2y−1)−
1
4

(8x−1y2)−
1
2

3. Solve the following equations:

a) x
1
2 = 8 b) x

1
3 = 3 c) x

2
3 = 4

d) x
3
2 = 27 e) x−

3
2 = 8 f) x−

2
3 = 9

g) x
3
2 = x

√
2 h) x

3
2 = 2

√
x i) 4x = 32

j) 9y = 1
27 k) 16z = 2 l) 100x = 1000

m) 8z = 1
128 n) (2t)3 × 4t−1 = 16 o) 9y

272y+1 = 81

4∗. Which is bigger, 2
1
2 or 3

1
3 ?
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Chapter 1: Summary

• If x ≥ 0, the square root of x, denoted
√
x, is the non-negative square root of x.

Another word for a number which is the square root of another number is surd.

• For x,y ≥ 0,
√
xy =

√
x
√
y.

• In fractions involving surds, the denominator may be rationalised as follows:

1√
x

= 1
x

√
x 1

x +
√
y

=
x −√y
x2 − y

• The laws of indices state that

am × an = am+n (am)n = amn

am ÷ an = am−n (ab)m = ambm

a0 = 1 a−n = 1
an

These identities hold:

� for all a,b > 0 and any values of m and n, or

� for all non-zero a, b any integer values of m and n.
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2

Coordinate Geometry

In this chapter we will learn to:

• find the length, gradient and midpoint of a line segment, given the coordinates of its end

points,

• find the equation of a straight line, given sufficient information,

• understand and use the relationships between the gradients of parallel and perpendicular

lines,

• interpret and use linear equations in context.

2.1 Introducing a Coordinate System

We have already studied a fair amount of geometry. We will have studied properties of parallel

lines, similar and right-angled triangles, meeting Pythagoras’ Theorem along the way. We are

also aware of a number of results (mostly about angles) concerning figures constructed inside

circles (like ‘the angle at the centre is twice the angle at the circumference’), and we are aware

of a number of results concerning the angles in quadrilaterals and polygons.

Armed with these results, and a good diagram of a problem, we can answer a pleasing number

of questions. At the same time, we have already seen some benefits of the interplay between

algebra and geometry. We have seen that straight lines can be represented by linear equations,

and that the intersection of two lines can be determined by solving simultaneous equations.

These results are the starting point for our considerations in this chapter. We will see that it is

possible to implement a large number of geometric ideas and constructions solely in algebraic

terms, and geometric results are obtained by solving suitable equations.

To be able to work this algebraic approach to geometry, we need to be able to describe points in

space in terms of numbers. We do this by introducing a coordinate system. Before we start, we

need to decide what sort of space we want to describe.

• Much mathematics is performed in a two-dimensional world; we can imagine an infinite

sheet of flat paper, or an infinite whiteboard; this space is colloquially called the plane.

• Alternatively, we could be interested in a fully three-dimensional space, and want to be able

to describe the position of anywhere in an infinite three-dimensional world.

Mathematicians are not content with stopping at three dimensions, and the geometry

of higher dimensional spaces can be investigated. We will not need to go that far!

For Interest

Restricting our attention to the two-dimensional plane, we need a system whereby we can de-

scribe the position of any point on the plane. There are many ways of doing this, but we will con-

fine our attention to the Cartesian coordinate system, discovered by the 17th century French

13
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mathematician René Descartes (and also by Pierre de Fermat). To do so, we need to make a

number of (basically arbitrary) choices:

• we need to identify one specific point in the plane, called the origin, and denoted by O,

• we need to choose two preferred directions, each perpendicular to the other,

• we need to choose a unit of length to be used for all measurements.

The position of a point P in the plane can be expressed

by two numbers. It is possible to move from the origin O
to the point P by moving a distance x parallel to the first

direction, and then a distance y parallel to the second di-

rection.

It is conventional to have the first preferred direction

drawn horizontally on the page, and the second preferred

direction drawn vertically. The distances x and y are

signed; a negative value of x means that P is to the left

of O, and a negative value of y means that P is below O.

We call x and y the coordinates of P , and write them as a

pair inside a set of brackets, (x,y).

Figure 2.1

If we wanted to work three-dimensionally, a similar procedure would require us to define three

mutually perpendicular directions as well as the origin, and we could describe the position of any

point in this space by a triple of coordinates (x,y,z).

2.2 The Length of a Line Segment

Two points A and B have coordinates (−2,1) and (4,4) re-

spectively. The straight line joining A to B is called the

line segment AB. The length of the line segment AB is

the distance between the points A and B.

A third point C is created by drawing lines from A and

B parallel to the coordinate axes. Note that ABC is a

right-angled triangle. It is clear that C has the same x-

coordinate as B, namely 4, and the same y-coordinate

as A, namely 1, so that C has coordinates (4,1). It is

clear that AC has length 4− (−2) = 6, while BC has length

4−1 = 3. Using Pythagoras’ Theorem, we deduce that the

length of AB =
√

62 + 32 =
√

45 = 3
√

5.

Figure 2.2

While we could use a calculator to write this length to a given accuracy, it is better to be exact

and write the length as a surd.

The important thing to notice is that this method can be

used wherever A and B are in the plane, and Pythagoras’

Theorem will give us a formula to use for the length of

AB, even though the diagram we might have to draw looks

different every time.

If the points A and B have coordinates (x1, y1) and (x2, y2)
respectively, then the horizontal and vertical sides of the

right-angled triangle with AB as hypotenuse have lengths

|x1 − x2|, |y1 − y2| respectively. We can therefore use

Pythagoras’ Theorem, and obtain a general formula for

the distance between two points on the plane:

Figure 2.3
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If A and B have coordinates (x1, y1) and (x2, y2), then the distance between A and B is√
(x1 − x2)2 + (y1 − y2)2

Key Fact 2.1 The Length of a Line Segment

The key point to remember is that we can use this formula without drawing any diagram. The

distance between two points can be found by purely algebraic manipulations.

Example 2.2.1. Show that the triangle ABC is isosceles, where A, B and C have coordinates

(1,3), (6,−1) and (5,8) respectively.

We see that AB =
√

(1− 6)2 + (3−−1)2 =
√

52 + 42 =
√

41, while

AC =
√

(1− 5)2 + (3− 8)2 =
√

42 + 52 =
√

41, and so AB = AC.

Example 2.2.2. The triangle PQR is right-angled, where P , Q and R have coordinates (1,4), (3,1)
and (k,8). Find the possible values of k.

We calculate PQ =
√

22 + 32 =
√

13, PR =
√

(k − 1)2 + 42 =
√
k2 − 2k + 17, and

QR =
√

(k − 3)2 + 72 =
√
k2 − 6k + 58. There are three cases to consider, depending

on where the right angle is.

• If the right angle is at P , then

PQ2 +PR2 = QR2

13 + k2 − 2k + 17 = k2 − 6k + 58
4k = 28
k = 7.

• If the right angle is at Q, then

PQ2 +QR2 = PR2

13 + k2 − 6k + 58 = k2 − 2k + 17
54 = 4k
k = 27

2 .

• If the right angle is at R, then

PR2 +QR2 = PQ2

k2 − 2k + 17 + k2 − 6k + 58 = 13
2k2 − 8k + 62 = 0
k2 − 4k + 31 = 0

Since this quadratic has discriminant −100 < 0, there are no solutions for k.

Thus the only possible values for k are 7 and 27
2 .
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2.3 The Midpoint of a Line Segment

Consider a line segment AB, where the end-

points A and B have coordinates (x1, y1) and

(x2, y2) respectively. Let M be the midpoint of

the line segment AB, and construct the points

C and D by drawing lines parallel to the coordi-

nate axes as shown.

It is clear that C has coordinates (x1, y2).
Moreover the triangles ACB and MDB are

similar, and hence the lengths CD and DB
are equal. Thus D is the midpoint of CB,

and hence it is clear that D has coordinates(
1
2 (x1 + x2), y2

)
. Moreover AC is twice the length

of MD, and hence the y-coordinate of D is

y2 + 1
2 (y1 − y2) = 1

2 (y1 + y2).

Figure 2.4

If A and B have coordinates (x1, y1) and (x2, y2), then the midpoint of AB has coordinates(
1
2 (x1 + x2), 1

2 (y1 + y2)
)

Key Fact 2.2 The Midpoint of a Line Segment

Where coordinate geometry comes into its own is when it is coupled with standard geometry,

and we use our standard geometrical knowledge and insight to understand what calculations to

perform.

Example 2.3.1. The parallelogram ABCD has coordinates A (1,4), B (5,7) and D (3,5). What are

the coordinates of C?

We know that the diagonals of a parallelogram bisect each other. The midpoint of BD
has coordinates (4,6), and is also the midpoint of AC. Thus C must have coordinates

(u,v), where
(

1
2 (1 + u), 1

2 (4 + v)
)

= (4,6), and hence u = 7 and v = 8. The coordinates

of C are (7,8).

2.4 The Gradient of a Line Segment

The gradient of a line is its slope. The steeper

the line, the larger the gradient. Unlike coordi-

nates, the gradient of a line is a property of the

whole line, and not of just one point on it. The

gradient is colloquially defined as the ratio

RISE

RUN

where the RISE is the amount that the line has in-

creased by between two points on that line, and

the RUN is the amount that has been travelled

from left to right between those two points. Al-

though the rise and the run will differ, depending

on the two points on the line that are chosen,

their ratio does not.

Figure 2.5

16



CHAPTER 2. COORDINATE GEOMETRY

Again, the convenience of coordinate geometry is that this calculation can be performed very

neatly in coordinates, without the need to draw a diagram. If A has coordinates (x1, y1), and B
has coordinates (x2, y2), then the line segment has risen by y2 − y1 between A and B, and hence

the rise is y2 − y1. Similarly, the run between these two points is x2 − x1.

The gradient of the line segment AB, where A and B have coordinates (x1, y1) and

(x2, y2), is
y2 − y1

x2 − x1

The gradient is the tangent tanθ of the angle that the line segment makes with the

x-axis.

Key Fact 2.3 The Gradient of a Line Segment

This formula works whether the coordinates of A and B are positive or negative.

Example 2.4.1. Find the gradient of the line segment AB, where A and B have coordinates:

a) A (3,5) , B (7,12) b) A (−4,5) , B (6,−4)

The gradient in the first case is 12−5
7−3 = 7

4 . In the second case it is −4−5
6−(−4) = − 9

10 .

The formula fails to work if x1 = x2, because we are trying to divide by 0. In this case,

the two points have the same x-coordinate, and the line segment is vertical. In this

case, we say that the gradient of the line is infinite, written∞.

For Interest

Even more importantly, we do not have to know that A is ‘to the left of’ B. In other words, we do

not need to know that the rise is positive. Since

y2 − y1

x2 − x1
=

y1 − y2

x1 − x2

the formula for the gradient tells us that the gradient of AB is the same as the gradient of BA.

They are, after all, the same line. This is particularly important when we are performing algebraic

calculations, and we might not know (at least initially) whether x1 < x2 or the reverse.

Example 2.4.2. The lines AB and CD have the same gradient, where A (3,1), B (p,p), C (5,3) and

D (2p,2p). What is the value of p?

Since the two gradients are the same, we see that

p − 1
p − 3

=
2p − 3
2p − 5

(p − 1)(2p − 5) = (p − 3)(2p − 3)

2p2 − 7p + 5 = 2p2 − 9p + 9
2p = 4

and hence we deduce that p = 2.

Recall that lines with the same gradient are called parallel.

Example 2.4.3. Prove that the points A (1,1), B (5,3), C (3,0) and D (−1,−2) form a parallelogram.
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There are two ways in which this can be done. We can calculate the lengths of the

four sides:

AB =
√

(5− 1)2 + (3− 1)2 =
√

20

CD =
√

(−1− 3)2 + (−2− 0)2 =
√

20

BC =
√

(3− 5)2 + (0− 3)2 =
√

13

AD =
√

(−1− 1)2 + (−2− 1)2 =
√

13

Since opposite pairs of sides have the same length, we have a parallelogram.

Alternatively, we could calculate the gradients of the sides. The sides AB, BC, CD
and DA have respective gradients

3−1
5−1 = 1

2
0−3
3−5 = 3

2
−2−0
−1−3 = 1

2
1−(−2)
1−(−1) = 3

2

Since opposite pairs of sides are parallel, ABCD is a parallelogram.

Exercise 2A

Do not use a calculator. Where appropriate, leave square roots in your answers.

1. Find the lengths of the line segments joining these pairs of points. Where necessary as-

sume that a > 0 and p > q > 0.

a) (2,5) and (7,17) b) (−3,2) and (1,−1)
c) (4,−5) and (−1,0) d) (−3,−3) and (−7,3)
e) (2a,a) and (10a,−14a) f) (a+ 1,2a+ 3) and (a− 1,2a− 1)
g) (2,9) and (2,−14) h) (12a,5b) and (3a,5b)
i) (p,q) and (q,p) j) (p + 4q,p − q) and (p − 3q,p)

2. Show that the points (1,−2), (6,−1), (9,3) and (4,2) are vertices of a parallelogram.

3. Show that the triangle formed by the points (−3,−2), (2,−7) and (−2,5) is isosceles.

4. Show that the points (7,12), (−3,−12) and (14,−5) lie on a circle with centre (2,0).

5. Find the coordinates of the midpoints of the line segments joining these pairs of points.

a) (2,11) , (6,15) b) (5,7) , (−3,9)
c) (−2,−3) , (1,−6) d) (−3,4) , (−8,5)
e) (p + 2,3p − 1) , (3p + 4,p − 5) f) (p + 3, q − 7) , (p + 5,3− q)
g) (p + 2q,2p + 13q) , (5p − 2q,−2p − 7q) h) (a+ 3, b − 5) , (a+ 3, b + 7)

6. A (−2,1) and B (6,5) are the opposite ends of the diameter of a circle. Find the coordinates

of its centre.

7. M (5,7) is the midpoint of the line segment joining A (3,4) to B. Find the coordinates of B.

8. A (1,−2), B (6,−1), C (9,3) and D (4,2) are the vertices of a parallelogram. Verify that the

midpoints of the diagonals AC and BD coincide.

9. Which one of the points A (5,2), B (6,−3) and C (4,7) is the midpoint of the other two? Check

your answer by calculating two distances.

10. Find the gradients of the lines joining the following pairs of points.

a) (3,8) , (5,12) b) (1,−3) , (−2,6)
c) (−4,−3) , (0,−1) d) (−5,−3) , (3,−9)
e) (p + 3,p − 3) , (2p + 4,−p − 5) f) (p + 3, q − 5) , (q − 5,p + 3)
g) (p + q − 1, q + p − 3) , (p − q + 1, q − p + 3) h) (7,p) , (11,p)

11. Find the gradients of the lines AB and BC where A is (3,4), B is (7,6) and C is (−3,1). What

can you deduce about the points A, B and C?
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12. The point P (x,y) lies on the straight line joining A (3,0) and B (5,6). Find expressions for the

gradients of AP and PB. Hence show that y = 3x − 9.

13. A line joining a vertex of a triangle to the midpoint of the opposite side is called a median.

Find the length of the median AM in the triangle A (−1,1), B (0,3), C (4,7).

14. A triangle has vertices A (a,b), B (p,q) and C (u,v).

a) Find the coordinates of M , the midpoint of AB, and N , the midpoint of AC.

b) Show that MN is parallel to BC.

15. The points A (2,1), B (2,7) and C (−4,−1) form a triangle. M is the midpoint of AB and N is

the midpoint of AC.

a) Find the lengths of MN and BC. b) Show that BC = 2MN .

16. The vertices of a quadrilateral ABCD are A (1,1), B (7,3), C (9,−7) and D (−3,−3). The points

P , Q, R and S are the midpoints of AB, BC, CD and DA respectively.

a) Find the gradient of each side of PQRS . b) What type of quadrilateral is PQRS?

17. The origin O and the points P (4,1), Q (5,5) and R (1,4) form a quadrilateral.

a) Show that OR is parallel to PQ. b) Show that OP is parallel to RQ.

c) Show that OP = OR. d) What shape is OPQR?

18. The origin O and the points L(-2, 3), M(4, 7) and N (6, 4) form a quadrilateral.

a) Show that ON = LM . b) Show that ON is parallel to LM .

c) Show that OM = LN . d) What shape is OLMN?

19. The vertices of a quadrilateral PQRS are P (1,2), Q (7,0), R (6,−4) and S (−3,−1).

a) Find the gradient of each side of the quadrilateral.

b) What type of quadrilateral is PQRS?

20. The vertices of a quadrilateral are T (3,2), U (2,5), V (8,7) and W (6,1). The midpoints of

UV and VW are M and N respectively. Show that the triangle TMN is isosceles.

21. The vertices of a quadrilateral DEFG are D (3,−2), E (0,−3), F (−2,3) and G (4,1).

a) Find the length of each side of the quadrilateral.

b) What type of quadrilateral is DEFG?

22. The points A (2,3), B (4,x) and C = (2x,−3) are such that BC = AC. What are the possible

values of x?

23∗. The triangle ABC has vertices A (a,b), B (p,q) and C (u,v). The points L, M and N are the

midpoints of BC, AC and AB respectively.

a) Write down the coordinates of L, M and N .

b) If G is the point
(

1
3 (a+ p +u), 1

3 (b + q + v)
)
, show that G lies on the line AL.

c) Explain why the three medians of the triangle all pass through one point (we say that

the medians are concurrent).

24∗. The quadrilateral ABCD has perpendicular

diagonals. Let O be the point of intersection

of the two diagonals. Suppose that OA = a,

OB = b, OC = c, and OD = d.

a) Write down expressions for AB and CD

b) Prove that AB2 +CD2 = AD2 +BC2.

25∗. We know that the diagonals of a parallelogram bisect each other. Prove now that any

quadrilateral ABCD whose diagonals bisect each other is a parallelogram (Hint: Define

coordinate axes so that AC lies on the x-axis, with O being the midpoint of the diagonal.).
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2.5 The Equation of a Line

There are various ways by which we can spec-

ify a line. We might, for instance, know the line’s

gradient and one of the points it passes through.

Suppose then that a straight line has gradient

m, and crosses the y-axis at the point (0, c). In

this case, c is called the y-intercept. If we con-

sider a point (x,y) on the line, then we calculate

the line’s gradient to be

m = y−c
x−0

and hence we deduce that y = mx + c.

Figure 2.6

The equation of the line with gradient m with y-intercept c is

y = mx + c

Key Fact 2.4 The Equation of a Line 1

More generally, we might know the gradient

of the line, but instead of knowing the y-

intercept, we might have the coordinates of a

point through which the line passes (to know the

y-intercept is, of course, to know the point on the

y-axis through which the line passes). Suppose

that a straight line has gradient m, and passes

through the point (x1, y1). If (x,y) is any point on

the line, we calculate the gradient of the line to

be

m =
y − y1

x − x1

so the line has equation y − y1 = m(x − x1).

Figure 2.7

The equation of the line with gradient m passing through the point (x1, y1) is

y − y1 = m(x − x1)

Key Fact 2.5 The Equation of a Line 2

This formula clearly sets up the equation of a line with gradient m. Since both sides of the equa-

tion are equal to 0 when x = x1 and y = y1, it is clear that this line passes through the point

(x1, y1). Note that a line with y-intercept c is a line passing through (0, c), and so the y = mx + c
formula is a special case of this one.

20



CHAPTER 2. COORDINATE GEOMETRY

What can we do if we do not know the gradient

of the line? All that it takes to define a straight

line is to know two points on that line. Suppose

now that a line passes through the points (x1, y1)
and (x2, y2). Then this line has gradient

y2 − y1

x2 − x1

and hence its equation is

y − y1 =
y2 − y1

x2 − x1
(x − x1)

Figure 2.8

When drawing straight line graphs in previous years, you were probably taught to plot

three points before drawing the line. Three points were not necessary to define the line,

but the third point was useful as a means of detecting calculation error in determining

the coordinates of those points, or identifying if one of those points had been plotted

incorrectly.

For Interest

The equation of the line passing through the points (x1, y1) and (x2, y2) is

y − y1

y2 − y1
=

x − x1

x2 − x1

Key Fact 2.6 The Equation of a Line 3

It is worth noting that both sides of this equation are equal to 0 at the point (x1, y1), and both

sides are equal to 1 at (x2, y2). This is a useful point to remember, since it helps us to substitute

the right values into the formulae correctly.

Example 2.5.1. Find the equation of the line with gradient −1 passing through the point (−2,3).

The equation is y − 3 = −1
(
x − (−2)

)
= −x − 2, or y = 1− x.

Example 2.5.2. Find the equation of the line passing through the points (3,4) and (−1,2).

There are two possible approaches here. We could start by finding the gradient
4−2

3−(−1) = 1
2 , so that the equation is y − 4 = 1

2 (x − 3), or y = 1
2x + 5

2 . Alternatively we

could use the last formula, so that the equation is

1
2 (y − 2) =

y − 2
4− 2

=
x − (−1)
3− (−1)

= 1
4 (x + 1)

which gives y = 1
2x + 5

2

We note that none of these methods for obtaining the equations of lines work if the line is ‘verti-

cal’ (has infinite gradient). Lines of this type have equations of the form x = k for some constant

k. This means that the first two formulae fail to work, because we have no value for the gradi-

ent m that we can use, and the third formula fails because two points on the line will have the

same x-coordinate, and hence the formula asks us to divide by 0. There should be little diffi-

culty in recognising such lines, and finding their equations without reference to any of the three

formulae above.
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2.6 The equation ax + by + c = 0

It is untidy that we do not currently have a method of writing equations of lines which can repre-

sent all lines: the y = mx + c shape is not good enough, since it does not handle vertical lines.

It is easy to see that an equation of the form y = mx + c can be written as mx − y + c = 0, while a

vertical line, with equation x = k, can be written in the form x − k = 0.

For any straight line, constants a, b and c can be found such that the equation of the

line is

ax + by + c = 0

Food For Thought 2.1

Example 2.6.1. Find the equation of the line passing through the points (2,4) and (5,−3) in the

form ax + by + c = 0, where a, b and c are integers.

Using the third formula, the equation is

y − 4
−3− 4

=
x − 2
5− 2

−1
7 (y − 4) = 1

3 (x − 2)

−3(y − 4) = 7(x − 2)
7x + 3y − 26 = 0

Example 2.6.2. What is the equation of the line passing through A and the midpoint of BC, where

A, B and C have coordinates (1,4), (−2,7) and (4,11)? Write the equation in the form ax+by+c = 0.

The midpoint of BC has coordinates (1,9). The desired line is a vertical one, with

equation x = 1, or x − 1 = 0.

Example 2.6.3. What is the gradient of the line 3x + 11y − 6 = 0?

This equation can be written as y = − 3
11x + 6

11 , and hence its gradient is − 3
11 .

The last example shows another benefit of this new way of writing equations of lines. The

y = mx + c formulation might involve complicated fractions, whereas the new format only needs

integers to describe the line.

Example 2.6.4. One side of a parallelogram lies on the straight line with equation 3x−4y−7 = 0.

The point (2,3) is a vertex of the parallelogram. Find the equation of one other side.

The line 3x − 4y − 7 = 0 can be written y = 3
4x −

7
4 , and hence has gradient 3

4 . The

point (2,3) does not lie on this line. Hence another side of the parallelogram (the only

other side we can be certain about) passes through (2,3) with gradient 3
4 , and so has

equation y − 3 = 3
4 (x − 2), or 3x − 4y + 6 = 0.

What this method of describing lines gains in elegance and convenience, however, it loses in

uniqueness. There is no longer exactly one equation of a line. The equations

x + 3y − 1 = 0 3x + 9y − 3 = 0 − 2x − 6y + 2 = 0

all describe the same equation (each can be obtained from the other by multiplying through by

some constant). However, the benefits of being able to describe all lines in a single manner

outweigh this disadvantage.
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2.7 The Point of Intersection of Two Lines

Where do the two lines 2x − y = 4 and

3x + 2y + 1 = 0 meet? How do we find the coor-

dinates of the point of intersection of these two

lines.

We want the point (x,y) that lies on both lines,

and hence the values (x,y) must satisfy both

equations. To find these values, then, we need to

solve the two equations simultaneously. These

particular equations have simultaneous solu-

tion x = 1, y = −2, so the point of intersection

is (1,−2).

Figure 2.9

This technique will find the point of intersection of any pair of nonparallel lines. Solving simulta-

neous equations will also enable us to find the points of intersection of more complicated curves.

Exercise 2B

1. Test whether the given point lies on the straight line (or curve) with the given equation.

a) (1,2) on y = 5x − 3, b) (3,−2) on y = 3x − 7,

c) (3,−4) on x2 + y2 = 25, d) (2,2) on 3x2 + y2 = 40,

e)
(
1,1 1

2

)
on y = x+2

3x−1 , f)
(
5p, 5

p

)
on y = 5

x ,

g) (p, (p − 1)2 + 1) on y = x2 − 2x + 2, h) (t2,2t) on y2 = 4x.

2. Find the equations of the straight lines through the given points with the gradients shown.

Your final answers should not contain any fractions.

a) (2,3), gradient 5, b) (1,−2), gradient −3,

c) (0,4), gradient 1
2 , d) (−2,1), gradient −3

8 ,

e) (0,0), gradient −3, f) (3,8), gradient 0,

g) (−5,−1), gradient −3
4 , h) (−3,0), gradient 1

2 ,

i) (−3,−1), gradient 3
8 , j) (3,4), gradient −1

2 ,

k) (2,−1), gradient −2, l) (−2,−5), gradient 3,

m) (0,−4), gradient 7, n) (0,2), gradient −1,

o) (3,−2), gradient −5
8 , p) (3,0), gradient −3

5 ,

q) (d,0), gradient 7, r) (0,4), gradient m,

s) (0, c), gradient 3, t) (c,0), gradient m.

3. Find the equations of the lines joining the following pairs of points. Leave your final answer

without fractions and in one of the forms y = mx + c or ax + by + c = 0.

a) (1,4) and (3,10), b) (4,5) and (−2,−7),
c) (3,2) and (0,4), d) (3,7) and (3,12),
e) (10,−3) and (−5,−12), f) (3,−1) and (−4,20),
g) (2,−3) and (11,−3), h) (2,0) and (5,−1),
i) (−4,2) and (−1,−3), j) (−2,−1) and (5,−3),
k) (−3,4) and (−3,9), l) (−1,0) and (0,−1),
m) (2,7) and (3,10), n) (−5,4) and (−2,−1),
o) (0,0) and (5,−3), p) (0,0) and (p,q),
q) (p,q) and (p + 3, q − 1), r) (p,−q) and (p,q),
s) (p,q) and (p + 2, q + 2), t) (p,0) and (0, q).

4. Find the gradients of the following lines.
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a) 2x + y = 7, b) 3x − 4y = 8, c) 5x + 2y = −3,

d) y = 5, e) 3x − 2y = −4, f) 5x = 7,

g) x + y = −3, h) y = 3(x + 4), i) 7− x = 2y,

j) 3(y − 4) = 7x, k) y = m(x − d), l) px + qy = pq.

5. Find the equation of the line through (−2,1) parallel to y = 1
2x − 3.

6. Find the equation of the line through (4,−3) parallel to y + 2x = 7.

7. Find the equation of the line through (1,2) parallel to the line joining (3,−1) and (−5,2).

8. Find the equation of the line through (3,9) parallel to the line joining (−3,2) and (2,−3).

9. Find the equation of the line through (1,7) parallel to the x-axis.

10. Find the equation of the line through (d,0) parallel to y = mx + c.

11. Find the points of intersection of the following pairs of straight lines.

a) 3x + 4y = 33, 2y = x − 1, b) y = 3x + 1, y = 4x − 1,

c) 2y = 7x, 3x − 2y = 1, d) y = 3x + 8, y = −2x − 7,

e) x + 5y = 22, 3x + 2y = 14, f) 2x + 7y = 47, 5x + 4y = 50,

g) 2x + 3y = 7, 6x + 9y = 11, h) 3x + y = 5, x + 3y = −1,

i) y = 2x + 3, 4x − 2y = −6, j) ax + by = c, y = 2ax,

k) y = mx + c, y = −mx + d, l) ax − by = 1, y = x,

12. ABCD is a rectangle, where A, B and C have coordinates (0,0), (6,0) and (6,3) respec-

tively. Let P be the midpoint of AB, and let Q be the midpoint of CD. The lines DP and QB
meet the diagonal AC at the points M and N respectively. Show that AM = MN = NC.

13. Let P , with coordinates (p,q), be a fixed point

on the line with equation y = mx + c, and let

Q, with coordinates (r, s), be any other point

on that line. Show that the gradient of PQ is

m for all positions of Q.

14. There are some values of a, b and c for which

the equation ax+by+c = 0 does not represent

a straight line. What are they?

15∗. The point P has coordinates (p,q). The line �
passes through P , and has negative gradient

−m, where m > 0. The line � meets the x-axis

and y-axis at A and B respectively. Find an

expression for the area of the triangle OAB.

What happens when q = −mp?

16∗. The points A and B have coordinates (−a,0) and (a,0) respectively. The line �1 passes

through A with gradient m, while the line �2 passes through B with gradient −m−1. Find

the coordinates (u,v) of the point of intersection C of the lines �1 and �2, and show that

u2 + v2 = a2.

17∗. The triangle ABC has coordinates A (a1, a2), B (b1, b2) and C (c1, c2). A median of a triangle is

the line passing through one vertex and the midpoint of the opposite edge (so that median

through A passes through A and the midpoint of BC).

a) Write down the equation of the median through A.

b) Show that the point G with coordinates
(

1
3 (a1+b1+c1), 1

3 (a2+b2+c2)
)

lies on this median.

c) Why does this show that all three medians of a triangle meet at a point (such lines are

called concurrent)? The point where all three medians meet is called the centroid, or

centre of gravity, of the triangle.

2.8 Perpendicular Lines

If two lines are parallel, then they have the same gradient. What can we say about the gradients

of two lines which are perpendicular?

Certainly, if a line has a positive gradient, then the perpendicular line has a negative gradient,

and vice versa. But we can be more precise than this.
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If we have a line with positive gradient m, then we can pick points P and B on the line so that

the run from P to B is 1, and so the rise from P to B is m. We have the ‘gradient triangle’

PAB.

Figure 2.10

If we consider a second line which is perpendicular to the first, and which meets the first line at

P , then this line can be obtained from the first by rotating it through 90◦ about the point P . The

gradient triangle PAB is then rotated to the gradient triangle PA′B′ . Thus, between B′ and P , the

new line has run m and rise −1, and hence the gradient of the second line is

−1
m

= −m−1 .

If two lines are perpendicular, then their gradients m1 and m2 are such that

m1m2 = −1 or m1 = − 1
m2

Key Fact 2.7 Perpendicular Lines

This formula is not true if the lines are parallel to the two coordinate axes, when their

gradients are 0 and∞. There is no difficulty, however, in identifying such perpendicular

lines!

For Interest

It is also true that if two lines have gradients m1 and m2 such that m1m2 = −1, then these lines

are perpendicular. Showing this is a question to be found in Miscellaneous Exercises 1.

Example 2.8.1. Show that the points A (0,−5), B (−1,2), C (4,7) and D (5,0) form a rhombus.

We could show this by calculating the four side lengths, but here is an alternative

approach. The midpoint of AC is
(

1
2 (0 + 4), 1

2 (−5 + 7)
)

= (2,1), while the midpoint of BD

is
(

1
2 (−1 + 5), 1

2 (2 + 0)
)

= (2,1). Since the midpoints of the two diagonals coincide, the

quadrilateral is a parallelogram.

The gradient of AC is
7−(−5)

4−0 = 3, while the gradient of BD is 0−2
5−(−1) = −1

3 . Since

3×−1
3 = −1, the two diagonals are perpendicular, and hence ABCD is a rhombus.

Example 2.8.2. Find the coordinates of the foot of the perpendicular from A (−2,−4) to the line

joining B (0,2) and C (−1,4).
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It is often worth drawing a sketch of the

problem. It makes it easier to be clear

about what needs to be done. The perpen-

dicular from A to the line BC is the line

through A that is perpendicular to BC, and

its foot is the point where it meets the line

BC. The question is asking for the coordi-

nates of P .

First, we calculate that the gradient of BC
is 2−4

0−(−1) = −2. Since its y-intercept is 2, the

equation of BC is y = −2x + 2.

Thus the perpendicular from A has gradi-

ent 1
2 (since 1

2 ×−2 = −1), and so has equa-

tion

Figure 2.11

y + 4 = 1
2 (x + 2)

x − 2y = 6

Solving the simultaneous equations 2x + y = 2 and x − 2y = 6, we deduce that the

coordinates of P are (2,−2).

Example 2.8.3. Find the equation of the perpendicular bisector of the line AB, where A and B
have coordinates (−2,5) and (3,2).

The perpendicular bisector of AB is the line which is perpendicular to AB that passes

through the midpoint M of AB.

The midpoint M has coordinates
(

1
2 (−2 + 3), 1

2 (5 + 2)
)

= ( 1
2 ,

7
2 ), and the line AB has

gradient 2−5
3−(−2) = −3

5 . Thus the perpendicular bisector of AB has gradient 5
3 , and so

has equation

y − 7
2 = 5

3

(
x − 1

2

)
5x − 3y + 8 = 0

2.9 The Angle Between Two Lines

Using easy trigonometric ideas, the following is

clear:

The tangent of a straight line is the tangent

of the angle that the line makes with the x-

axis.

Food For Thought 2.2

In the diagram on the right, the two lines have

gradients tanθ and tanφ respectively.

Figure 2.12

The angle between the two lines is θ −φ, and this can be calculated by elementary means.

Example 2.9.1. Find the angle between the lines y = 3x + 1 and y = x + 7.

These lines make the angles tan−1 3 = 71.6◦ and tan−1 1 = 45◦ with the x-axis, and so

the angle between them is 71.6◦ − 45◦ = 26.6◦.

26



CHAPTER 2. COORDINATE GEOMETRY

Although we will need a little more trigonometry to understand why it works, there is a useful

formula which can be used to calculate the angle between two lines more directly.

If two lines have gradients m1 and m2, where m1 > m2, then the angle between these

lines is

tan−1 m1 −m2

1 +m1m2

Key Fact 2.8 The Angle Between Two Lines

Considering the previous example again, since the lines y = 3x + 1 and y = x + 7 have gradients

3 and 1 respectively, the angle between them is

tan−1 3− 1
1 + 3× 1

= tan−1 1
2 = 26.6◦

Note that this formula for the angle between two lines is not properly defined when m1m2 = −1,

since we are then trying to divide by 0. However, in this case the two lines are perpendicular, and

the lack of definition in this formula matches the lack of definition of the tangent of 90◦.

2.10 The Distance from a Point to a Line

If P is the foot of the perpendicular from the

point A to the line �, and if Q is any other

point on the line �, then the distance AQ is the

hypotenuse of a right-angled triangle, one of

whose other sides is AP . Thus AQ ≥ AP , and

we see that the perpendicular distance AP is the

shortest distance from A to any point on the line

�. This distance is called, simply, the distance

from the point A to the line �.

In principle, we know how to calculate this dis-

tance. If we know the equation of � and the co-

ordinates of A, then we can find the equation of

AP and solve to find the coordinates of P , finally

calculating the distance AP . What is interesting

is that there is an elegant formula which enables

us to avoid all this work!

Figure 2.13

Suppose that the line � has equation ax+by+ c = 0, and that A has coordinates (u,v). Then � has

gradient − a
b , and so the perpendicular through A has gradient b

a , and hence has equation

bx − ay = bu − av

Solving the equations

ax + by + c = 0
bx − ay = bu − av

simultaneously, we obtain

(a2 + b2)x + ac = a(ax + by + c) + b(bx − ay) = b2u − abv
(a2 + b2)y + bc = b(ax + by + c)− a(bx − ay) = a2v − abu

and so the coordinates of P are (
b2u − abv − ac

a2 + b2 ,
a2v − abu − bc

a2 + b2

)
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Thus the perpendicular distance d is given by the formula

d2 =
(
u − b2u − abv − ac

a2 + b2

)2

+
(
v − a2v − abu − bc

a2 + b2

)2

=
1

(a2 + b2)2

[
(a2u + abv + ac)2 + (b2v + abu + bc)2

]
=

1
(a2 + b2)2

[
a2(au + bv + c)2 + b2(au + bv + c)2

]
=

(au + bv + c)2

a2 + b2

To calculate d, we need to take the positive square root of the right-hand side.

The perpendicular distance from a point (u,v) to the line ax + by + c = 0 is

au + bv + c√
a2 + b2

(or minus the above if this expression is negative).

Key Fact 2.9 Perpendicular Distance to a Line

Looking ahead to Chapter 4, we use the modulus function to write this expression as

|au + bv + c|√
a2 + b2

Exercise 2C

1. In each part write down the gradient of a line which is perpendicular to one with the given

gradient.

a) 2 b) −3 c) 4 d) −5
6

e) −1 f) 1 3
4 g) − 1

m h) m
i)

p
q j) 0 k) −m l) a

b−c

2. In each part find the equation of the line through the given point which is perpendicular to

the given line. Write your final answer so that it doesn’t contain fractions.

a) (2,3), y = 4x + 3 b) (−3,1), y = −1
2x + 3

c) (2,−5), y = −5x − 2 d) (7,−4), y = 2 1
2

e) (−1,4), 2x + 3y = 8 f) (4,3), 3x − 5y = 8
g) (5,−3), 2x = 3 h) (0,3), y = 2x − 1
i) (0,0), y = mx + c j) (a,b), y = mx + c
k) (c,d), ny − x = p l) (−1,−2), ax + by = c

3. Find the equation of the line through the point (−2,5) which is perpendicular to the line

y = 3x + 1. Find also the point of intersection of the two lines.

4. Find the equation of the line through the point (1,1) which is perpendicular to the line

2x − 3y = 12. Find also the point of intersection of the two lines.

5. Find the angle between the lines y = 2x − 1 and y = 1
2x + 7 to 2 decimal places.

6. A line through a vertex of a triangle which is perpendicular to the opposite side is called an

altitude. Find the equation of the altitude through the vertex A of the triangle ABC where

A is the point (2,3), B is (1,−7) and C is (4,−1).

7. P (2,5), Q (12,5) and R (8,−7) form a triangle.
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a) Find the equations of the altitudes (see Question 6) through R and Q.

b) Find the point of intersection of these altitudes.

c) Show that the altitude through P also passes through this point.

8. The vertices of the triangle PQR are P (1,5), Q (2,−2) and R (−2,6).

a) Write down the equations of the perpendicular bisectors of PQ and QR. Find the point

X where these two lines meet.

b) Show that XP = XQ = XR.

c) Does X lie on the perpendicular bisector of PR as well?

9∗. The vertices of the triangle ABC are A (a1, a2), B (b1, b2) and C (c1, c2), where

a2
1 + a2

2 = b2
1 + b2

2 = c2
1 + c2

2.

a) Find the equation of the perpendicular bisector of BC. Does this line pass through the

origin?

b) Show that the perpendicular bisectors of the three sides of ABC are concurrent.

10∗. The vertices of the triangle ABC are A (a1, a2), B (b1, b2) and C (c1, c2), where

a2
1 + a2

2 = b2
1 + b2

2 = c2
1 + c2

2.

a) Find the equation of the altitude from A.

b) Show that the point H (a1 + b1 + c1, a2 + b2 + c2) lies on this altitude.

c) Explain why this shows in general that the three altitudes of a triangle are concurrent.

The common point is called the orthocentre of the triangle.

d) Show that the origin O, the orthocentre H of the triangle and the centroid G of the

triangle (see Question 17 of Exercise 2B) lie in a straight line (are collinear).

Chapter 2: Summary

• The length of the line segment AB, where A and B have coordinates (x1, y1) and

(x2, y2) respectively, is √
(x1 − x2)2 + (y1 − y2)2 .

The gradient of the line segment is

y2 − y1
x2 − x1

and the midpoint of AB has coordinates(
1
2 (x1 + x2), 1

2 (y1 + y2)
)
.

• The line with gradient m and y-intercept c has equation

y = mx + c .

The line with gradient m passing through the point (x1, y1) has equation

y − y1 = m(x − x1) .

The line passing through the two points (x1, y1) and (x2, y2) has equation

y − y1
y2 − y1

= x − x1
x2 − x1

.

• Any line can have its equation written in the form ax + by + c = 0 for constants a, b
and c. This form is not unique.

• Parallel lines have identical gradients. Lines with gradients m1 and m2 are perpen-

dicular when m1m2 = −1.

• The distance from the point (u,v) to the straight line with equation ax + by + c = 0 is

±au + bv + c√
a2 + b2
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3

Quadratics and Inequalities

In this Chapter we will learn:

• how to complete the square of a quadratic expression, and understand the relationship

between the resulting expression and the shape of the graph of the quadratic,

• how to find the discriminant of a quadratic, and understand its relationship to the number

of zeros of the quadratic,

• how to solve quadratic equations, and quadratic and linear inequalities,

• how to solve simultaneous equations involving one quadratic equation and one linear one,

• to recognise and solve equations which are quadratic in some function.

3.1 Quadratic Expressions

An equation of the form bx + c, where b,c are constants, is called linear. Its graph y = bx + c is

a straight line. If we add a term in x2, the resulting expression ax2 + bx + c is called a quadratic,

and the corresponding graph y = ax2 + bx + c is a parabola.

Thus a quadratic is an expression of the form ax2 + bx + c, where a,b,c are constants (of course,

a must be non-zero: otherwise the expression is linear). Examples of quadratics are 2x2 − 7x + 3,

x2 + 29x and 4− 3x2. The constants a,b,c are called coefficients: a is the coefficient of x2, b the

coefficient of x, and c is called the constant coefficient.

The graph of a quadratic is always either a ‘smile’ or a ‘frown’, with a line of symmetry parallel to

the y-axis: the graph is a ‘smile’ if the coefficient a of x2 is positive, and a ‘frown’ otherwise.

a > 0 a < 0
Figure 3.1

The minimum value of a ‘smile’, and the maximum value of a ‘frown’ quadratic occurs where the

quadratic meets the line of symmetry. Knowing where the line of symmetry is, and knowing the

vertex of the quadratic (the point where the quadratic meets the line of symmetry) is important,

if we are to know the shape of the curve. This can be done by elementary trial-and-error methods.

Example 3.1.1. Find the line of symmetry and vertex of the quadratic y = x2 + 4x − 9.

Since y = −4 when x = 1 and also when x = −5, the line of symmetry occurs midway

between these two values, so that the line of symmetry has equation x = −2.
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x −6 −5 −4 −3 −2 −1 0 1 2
y 3 −4 −9 −12 −13 −12 −9 −4 3

When x = −2, y = −13, and hence the coordinates of the vertex are (−2,−13).

3.2 Completing The Square

Finding the line of symmetry and the vertex can be done much more effectively by writing the

quadratic in an equivalent form. Considering the case of y = x2 + 4x − 9 discussed above, we

note that we can write

y = x2 + 4x − 9 = (x + 2)2 − 4− 9 = (x + 2)2 − 13

Since (x + 2)2 is a perfect square, it is always at least zero, and it is only zero when x + 2 = 0.

Thus y ≥ −13 everywhere, and y = −13 precisely when x = −2. Thus it is clear that the vertex is

(−2,−13), and the line of symmetry is x = −2.

Example 3.2.1. Find the line of symmetry and the vertex of the quadratic y = 11− 2(x + 1)2.

Since (x + 1)2 is a perfect square, (x + 1)2 ≥ 0, and so y ≤ 11 for all x, and that y = 11
precisely when x = −1. Thus the line of symmetry is x = −1, and the vertex is (−1,11).

How do we put a quadratic into this new shape? Start with the simple case where a = 1, and

consider the quadratic x2 + bx + c. We note that x2 and bx are the first two terms of the perfect

square
(
x + 1

2b
)2

. Since
(
x + 1

2b
)2

= x2 + bx + 1
4b

2, we have

x2 + bx =
(
x + 1

2b
)2 − 1

4b
2

and hence

x2 + bx + c =
(
x + 1

2b
)2

+
(
c − 1

4b
2
)

This process is known as completing the square. It can be easily extended to deal with more

complex quadratics.

Example 3.2.2. Complete the square for these quadratics:

(a) x2 + 10x + 32, (b) 2x2 + 10x + 7, (c) 3− 4x − 2x2

(a) x2 + 10x + 32 = (x + 5)2 − 25 + 32 = (x + 5)2 + 7

(b) Start by taking out the factor of 2 in front of x2, so that

2x2 + 10x + 7 = 2(x2 + 5x) + 7 = 2
[(
x + 5

2

)2 − 25
4

]
+ 7

= 2
(
x + 5

2

)2 − 25
2 + 7 = 2

(
x + 5

2

)2 − 11
2

(c) Do the same with the factor of −2, so

3− 4x − 2x2 = 3− 2(x2 + 2x) = 3− 2
[
(x + 1)2 − 1

]
= 3− 2(x + 1)2 + 2 = 5− (x + 1)2

where we have completed the square for x2 + 2x to obtain (x + 1)2 − 1.

Example 3.2.3. Complete the square for x2 − 3x + 1; use the result to solve the equation

x2 − 3x + 1 = 0.

Since x2 − 3x + 1 =
(
x − 3

2

)2 − 9
4 + 1 =

(
x − 3

2

)2 − 5
4 , we solve the equation

x2 − 3x + 1 = 0(
x − 3

2

)2 − 9
4 + 1 = 0(

x − 3
2

)2
= 5

4

x − 3
2 = ±1

2

√
5

x = 1
2 (3±

√
5)
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Example 3.2.4. Complete the square for 12x2 − 7x − 12, and use the result to factorise the

quadratic.

We have

12x2 − 7x − 12 = 12
[
x2 − 7

12x
]
− 12 = 12

[(
x − 7

24

)2 − 49
576

]
− 12

= 12
(
x − 7

24

)2 − 49
48 − 12 = 12

(
x − 7

24

)2 − 625
48

and so, using the ‘Difference of Two Squares’ technique,

12x2 − 7x − 12 = 12
[(
x − 7

24

)2 − 625
576

]
= 12

[(
x − 7

24

)2 −
(

25
24

)2]
= 12

(
x − 7

24 −
25
24

)(
x − 7

24 + 25
24

)
= 12

(
x − 4

3

)(
x + 3

4

)
= (3x − 4)(4x + 3)

To sum up:

x2 + bx + c =
(
x + 1

2b
)2

+ c − 1
4b

2

ax2 + bx + c = a
(
x + b

2a

)2 − b2−4ac
4a

Key Fact 3.1 Completing the Square

It is probably just as easy to understand the process for completing the square in general, and

to work out each case ‘ ‘by hand’, as to learn these formulae!

Exercise 3A

1. Find the vertex and the line of symmetry for each of the following:

a) y = (x − 2)2 + 3 b) y = (x − 5)2 − 4 c) y = (x + 3)2 − 7
d) y = (2x − 3)2 + 1 e) y = (5x + 3)2 + 2 f) y = (3x + 7)2 − 4
g) y = (x − 3)2 + c h) y = (x − p)2 + q i) y = (ax + b)2 + c

2. Find the least (or, if appropriate, the greatest) value of each of the following quadratic

expressions, and the value of x for which this value occurs.

a) (x + 2)2 − 1 b) (x − 1)2 + 2 c) 5− (x + 3)2

d) (2x + 1)2 − 7 e) 3− 2(x − 4)2 f) (x + p)2 + q
g) (x − p)2 − q h) r − (x − t)2 i) c − (ax + b)2

3. Solve the following quadratic equations, leaving surds in your answer.

a) (x − 3)2 − 3 = 0 b) (x + 2)2 − 4 = 0 c) 2(x + 3)2 = 5
d) (3x − 7)2 = 8 e) (x + p)2 − q = 0 f) a(x + b)2 − c = 0

4. Complete the square for the following quadratic expressions:

a) x2 + 2x + 2 b) x2 − 8x − 3 c) x2 + 3x − 7
d) 5− 6x + x2 e) x2 + 14x + 49 f) 2x2 + 12x − 5
g) 3x2 − 12x + 3 h) 7− 8x − 4x2 i) 2x2 + 5x − 3

5. By completing the square, factorise the following expressions:

a) x2 − 2x − 35 b) x2 − 14x − 176 c) x2 + 6x − 432
d) 6x2 − 5x − 6 e) 14 + 45x − 14x2 f) 12x2 + x − 6

6. By completing the square, find (as appropriate) the least or greatest value of each of the

following expressions, and the value of x for which this occurs.

a) x2 − 4x + 7 b) x2 − 3x + 5 c) 4 + 6x − x2

d) 2x2 − 5x + 2 e) 3x2 + 2x − 4 f) 3− 7x − 3x2
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3.3 Solving Quadratic Equations

We now have three methods that can be used to solve quadratic equations:

• Factorisation is often the simplest method. To solve x2−6x+8 = 0 we write (x−2)(x−4) = 0.

Thus either x − 2 = 0 or x − 4 = 0, so that x = 2 or x = 4. The numbers 2 and 4 are the roots

of the equation. This method might be impossible, or just difficult, to do: try finding the

factors of 30x2 − 11x − 30, for example.

• We can use the so-called Quadratic Formula: the roots of the equation ax2 +bx+c = 0 are

x = −b±
√
b2−4ac
2a

• Quadratics can also be solved by completing the square. The equation x2 + 2x − 4 = 0
becomes (x + 1)2 − 5 = 0, and hence (x − 1)2 = 5, so that x − 1 = ±

√
5, and hence x = 1±

√
5.

It is worth noting that the Quadratic Formula is actually derived by completing the square! We

see that

ax2 + bx + c = 0

a
(
x + b

2a

)2 − b2−4ac
4a = 0(

x + b
2a

)2
= b2−4ac

4a2

x + b
2a = ±

√
b2−4ac

2a

x = −b±
√
b2−4ac
2a

Of course, for the Quadratic Formula (or the general method of completing the square) to work

we need a � 0. Since the quadratic equation becomes a linear one (and thus easy to solve) when

a = 0, this is not a demanding restriction!

If a quadratic equation cannot be solved by simple factorisation, it is likely that the roots will

involve surds. Always try to express solutions exactly, using surds. It is far better to say that

the roots of an equation are 1
2 (1 ±

√
2), instead of saying that the roots are 1.21 and −0.21 to

2 decimal places. Any result giving an answer to a fixed number of decimal places will be an

approximation, and using that approximation in later calculations will probably produce errors.

It is better to be exact whenever possible.

There is a school of thought that says that if you can do a problem on a calculator, you

are not doing mathematics, but just sums. While there are problems where calculators

are necessary, try to adopt the strategy of not using your calculator as a first resort!

For Interest

It is important to realise that there are some quadratics which we cannot (as yet) solve! It is quite

possible to choose constants a, b and c such that b2−4ac is negative, in which case the Quadratic

Formula cannot be implemented (or at least not until we have learned about Complex Numbers).

Example 3.3.1. Solve the equations:

(a) 2x2 − 3x − 4 = 0 (b) 2x2 − 3x + 4 = 0 (c) 30x2 − 11x − 30 = 0

(a) Using the formula

x = 3±
√

(−3)2−4×2×(−4)
4 = 1

4

[
3±
√

41
]

(b) Completing the square

2
(
x − 3

4

)2 − 9
8 + 4 = 0(

x − 3
4

)2
= −23

16

Since the right-hand side is negative, we cannot take its square root, and hence there are

no solutions. Had we used the formula, we would have been asked to calculate
√
−23, which

would indicate that there was no solution.
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(c) Completing the square

30
(
x2 − 11

30x
)

= 30

x2 − 11
30x = 1(

x − 11
60

)2
= 1 + 121

3600 = 3721
3600

x − 11
60 = ±61

60

x = 72
60 = 6

5 , −
50
60 = −5

6

Having found the solutions we observe that the equation could have been solved by finding

the elusive factorisation (5x − 6)(6x + 5) = 0.

3.4 The Discriminant

Considering the quadratic formula, the expression b2−4ac inside the square root has a particular

importance.

• If b2 − 4ac > 0, then there is no problem evaluating both roots of the quadratic, and the

quadratic equation ax2 + bx + c = 0 has two distinct roots.

• If b2 − 4ac = 0, then the formula tells us that x = − b
2a is the single root of the equation. In

a sense that will be made clear later, this root can be regarded as occurring twice, and is

often called a repeated root.

• If b2 − 4ac < 0, then the quadratic formula fails to give any solutions, and hence there are

no solutions.

The quantity ∆ = b2 − 4ac is called the discriminant of the quadratic ax2 + bx + c, since

it discriminates between the possible types of solution of the equation ax2 + bx + c = 0:

the equation ax2 + bx + c = 0 has two distinct roots if ∆ > 0, has one (repeated) root if

∆ = 0, and has no real roots if ∆ < 0.

Moreover, if a,b,c are integers and ∆ > 0 is a perfect square, then the roots of the

quadratic equation will be rational. In this case, a simple factorisation of the quadratic

is possible.

Key Fact 3.2 The Discriminant

Example 3.4.1. What can be said about the roots of the following quadratic equations?

a) 2x2 − 3x − 4 = 0 b) 2x2 − 3x − 5 = 0
c) 2x2 − 4x + 5 = 0 d) 2x2 − 4x + 2 = 0.

(a) Since ∆ = (−3)2−4×2×(−4) = 41 > 0 is not a perfect square, the equation has two irrational

roots.

(b) This time ∆ = (−3)2 − 4 × 2 × (−5) = 49 = 72 > 0, and hence the equation has two rational

roots.

(c) This time ∆ = (−4)2 − 4× 2× 5 = −24 < 0, and hence the equation has no roots.

(d) Finally ∆ = (−4)2 − 4× 2× 2 = 0, so the equation has one (repeated) root.

Example 3.4.2. The equation kx2 − 2x − 7 = 0 has two real roots. What can be said about the

value of k?

The quadratic has discriminant 4 + 28k. Since the equation has two real roots, ∆ > 0,

and hence k > −1
7 .

Example 3.4.3. The equation 3x2 + 2x + k = 0 has a repeated root. Find the value of k.
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The quadratic has discriminant 4− 12k. Since this must be equal to 0, it follows that

k = 1
3 .

Note that in none of these cases was it necessary to find the roots: determining the discriminant

was enough.

Exercise 3B

1. Solve the following equations, where possible, giving exact answers.

a) x2 + 3x − 5 = 0 b) x2 − 4x − 7 = 0 c) x2 + 6x + 9 = 0
d) 2x2 + 7x + 3 = 0 e) 8− 3x − x2 = 0 f) x2 + x + 1 = 0

2. Use the discriminant to determine whether the following equations have two roots, one

root or no roots. The constants p and q are positive.

a) x2 − 3x − 5 = 0 b) x2 + 2x + 1 = 0 c) x2 − 3x + 4 = 0
d) 3x2 − 6x + 5 = 0 e) x2 + px − q = 0 f) x2 − px + p2 = 0

3. The following equations have the number of roots shown in brackets. Deduce as much as

you can about the value of k.

a) x2 + 3x + k = 0 (2) b) x2 − 7x + k = 0 (1) c) kx2 − 3x + 5 = 0 (0)
d) 3x2 + 5x − k = 0 (2) e) x2 − 4x + 3k = 0 (1) f) kx2 − 5x + 7 = 0 (0)
g) x2 − kx + 4 = 0 (2) h) x2 + kx + 9 = 0 (0) i) kx2 + 7x + k = 0 (1).

4. If a and c are both positive, what can be said about the graph of y = ax2 + bx − c?

5. If a is negative and c is positive, what can be said about the graph of y = ax2 + bx + c?

6. If α and β are the roots of the quadratic equation x2 + bx + c = 0, express α + β and αβ in

terms of b and c (Hint: Factorise the quadratic).

7. If α and β are the roots of the quadratic equation ax2 + bx + c = 0, express α + β and αβ in

terms of a, b and c.

8. Show that the equation x+1
x−4 = x+7

2x+5 has no real roots.

9. Show that there is no real value of p for which the equation

(p + 1)x2 + (2p + 1)x + 9 = 0

has a repeated root. How many solutions does this equation have, for any value of p?

10∗. Find the only values of p and q such that the equation x2 + px = q2 has a unique solution.

11∗. Given that the roots of the equation x2 +ux+ (u + 5) = 0 differ by 1, find the possible values

of u, and the roots of the equation for each value of u.

3.5 Simultaneous Equations

Suppose we want to solve the simultaneous equations

y = x2 x + y = 6 .

The standard technique is to use the linear expression to express either x or y in terms of the

other variable, and substitute this expression into the quadratic equation.

36



CHAPTER 3. QUADRATICS AND INEQUALITIES

Figure 3.2

In this case we can write y = 6− x, and substitution gives us

6− x = x2

x2 + x − 6 = 0
(x + 3)(x − 2) = 0

so that x = −3,2. Substituting these values for x into the linear expression gives the correspond-

ing values of y. They are y = 9,4. Thus there are two solutions: either x = 2, y = 4 or x = −3, y = 9.

Note that the x and y values go together in pairs: x = 2 corresponds to y = 4 and not to y = 9. This

correspondence can be seen in the graph, where the coordinates of the two points of intersection

of the parabola y = x2 and the line x + y = 6 are (2,4) and (−3,9).

Example 3.5.1. Solve the simultaneous equations x2 − 2xy + 3y2 = 11 and x − 3y = 1.

The linear expression can be written x = 3y + 1. We substitute:

x2 − 2xy + 3y2 = 11

(3y + 1)2 − 2y(3y + 1) + 3y2 = 11

9y2 + 6y + 1− 6y2 − 2y + 3y2 = 11

6y2 + 4y − 10 = 0

3y2 + 2y − 5 = 0
(3y + 5)(y − 1) = 0

so that y = 1 , −5
3 . The corresponding values of x are 4 , −4. Thus the solutions are

x = −4, y = −5
3 and x = 4, y = 1.

Example 3.5.2. At how many points does the line x + 2y = 3 meet the curve 2x2 + y2 = 4?

Substituting x = 3− 2y into the other equation, we obtain

2(3− 2y)2 + y2 = 4

9y2 − 24y + 14 = 0

Since this quadratic has discriminant (−24)2 − 4× 9× 14 = 72, this quadratic has two

solutions. Thus the line meets the curve at two points.

3.6 Disguised Quadratics

Sometimes you will meet equations which are not, at first sight, quadratics. However, these

equations can be turned into quadratics by careful algebra and a sensible substitution.

Example 3.6.1. Solve the equations

(a) x = 2 + 8x−1, (b) t4 − 13t2 + 36 = 0, (c)
√
x = 6− x.

(a) Multiplying the equation by x yields x2 = 2x + 8, or x2 − 2x − 8 = 0. This factorises to read

(x − 4)(x + 2) = 0, and hence x = 4,−2.
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(b) Substituting x = t2 yields x2−13x+ 36 = 0, or (x−4)(x−9) = 0, so that x = 4,9. Thus t2 = 4,9
so that t = ±2,±3.

(c) Substituting
√
x = y yields y = 6 − y2, so that y2 + y − 6 = 0, and hence (y + 3)(y − 2) = 0, so

that y = −3,2. But since y =
√
x must be positive we must have y = 2, so that

√
x = 2, and

hence x = 4.

An alternative approach would be to square both sides, yielding x = (6− x)2 = 36−12x+ x2,

and hence x2 − 13x + 36 = 0. Solving this as above, we deduce that x = 4,9. Where has

this (incorrect) ‘solution’ of x = 9 come from? The problem is that the squared equation

x = (6 − x)2 is satisfied by solutions to the equation −
√
x = 6 − x, as well as by solutions to

the original equation. Squaring frequently results in an equation which is satisfied by more

than the solutions of the initial equation. The only case when this is not true is when both

sides of the equation are known to be positive (or both negative); keeping this in mind is an

added complication which can be avoided by adopting the first approach.

Exercise 3C

1. Solve the following pairs of simultaneous equations:

a) y = x + 1, x2 + y2 = 25 b) x + y = 7, x2 + y2 = 25
c) 2x + y = 5, x2 + y2 = 25 d) y = 1− x, y2 − xy = 0
e) y = 2x + 1, y = x2 − x + 3 f) y = 3x + 2, x2 + y2 = 26
g) y = 2x − 12, x2 + 4xy − 3y2 = −27 h) 2x − 5y = 6, 2xy − 4x2 − 3y = 1

2. Find the number of points of intersection of the straight line with the curve in each case:

a) y = 1− 2x, x2 + y2 = 1 b) y = 1
2x − 1, y = 4x2

c) y = 3x − 1, xy = 12 d) 4y − x = 16, y2 = 4x
e) 3y − x = 15, 4x2 + 9y2 = 36 f) 4y = 12− x, xy = 9

3∗. Solve the simultaneous equations

x2 + y2 + 2x − 4y = 0 x2 + y2 + 5x − 3y = 6

4. Solve the following equations exactly:

a) x4 − 5x2 + 4 = 0 b) x4 − 10x2 + 9 = 0 c) x6 − 7x3 − 8 = 0

d) x6 + x3 = 12 e) x = 3 + 10x−1 f) 2t + 5 = 3
t

g) x = 12
x+1 h)

√
t(
√
t − 6) = −9 i) x − 2

x+2 = 1
3

j) 12
x+1 −

10
x−3 = −3 k) 15

2x+1 + 10
x = 55

2 l) 1
y2 − 1

y2+1 = 1
2

m) x − 8 = 2
√
x n) x + 15 = 8

√
x o) t − 5

√
t − 14 = 0

p)
3√
x2 − 3
√
x − 6 = 0 q)

3√
t2 − 3 3

√
t = 4

5. Solve the equation (x2 + 2)2 − 14(x2 + 2) + 33 = 0

6. Solve the equation x(x + 2) + 24
x(x+2) = 11.

7∗. By substituting y = x − x−1 show that the expression

6x4 − 25x3 + 12x2 + 25x + 6

can be written as x2(6y2 − 25y + 24). Hence solve the quartic equation

6x4 − 25x3 + 12x2 + 25x + 6 = 0

8∗. Solve the equation (7 + 4
√

3)x + (7− 4
√

3)x = 4.
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3.7 Sketching Quadratics

We frequently want to know the shape of a curve. Drawing a graph inexactly, while showing

enough information to indicate its key properties, is called sketching the graph. When sketching

straight line graphs, it is generally enough to indicate the x- and y-intercepts (the points where

the line meets the x- and y-axes, or perhaps (qualitatively) the gradient of the curve:

Figure 3.3

We certainly do not need to plot individual points on the curve, as if we were drawing the graph

on graph paper! The same thing is true when we want to sketch a quadratic curve: we are not

being asked to draw an accurate graph, and do not need to plot a large number of individual

points:

This is a plot, not a sketch!

Figure 3.4

A sketch of a quadratic should include the key essentials of the curve, which can be determined

by factorisation or completing the square:

• Is it a ‘smile’ or a ‘frown’?

• Where does it intercept the axes?

• Where is the vertex?

Example 3.7.1. Sketch the quadratic y = x2 + 6x − 16.

Since y = (x+8)(x−2) = (x+3)2−25, the quadratic is a ‘smile’ with x-intercepts 2 and

−8 and a y-intercept −16, with vertex (−3,−25).

y = x2 + 6x − 1
Figure 3.5

Sometimes it is not even necessary to provide this much information. We might only be interested

in the sketch for the information about when the function is positive or negative, or we might only

be interested in when the function has a positive gradient and when it has a negative one. You

need to decide from context what information is needed in your sketch.
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Example 3.7.2. Sketch the curve y = 10 + x − 2x2, and hence determine the range of values of x
for which the curve is above the x-axis.

We want to know the sign of y, so shall not include information about the vertex. Since

y = (5 − 2x)(2 + x), there are x-intercepts at −2 and 5
2 . An adequate sketch can omit

the y-axis. The graph lies above the x-axis for −2 < x < 5
2 .

y = 10 + x − x2 y = x2 + x − 1
Figure 3.6

Example 3.7.3. Sketch the curve y = x2 + x − 1.

Since y =
(
x+ 1

2

)2 − 5
4 , the vertex occurs at

(
− 1

2 ,−
5
4

)
. The intercepts at 1

2 [−1±
√

5] are

a little too complicated to add to a small sketch (the question does not make it plain

that they are needed!)

These ideas can be used in reverse to retrieve the quadratic from its key properties.

Example 3.7.4. Write down the equation of the quadratic with vertex (1,2) which passes through

(3,−6).

The quadratic must have equation y = a(x − 1)2 + 2 for some a, since

−6 = a(3−1)2 +2 = 2+4a, we deduce that a = −2, so that y = −2(x−1)2 +2 = 4x−2x2.

Exercise 3D

1. Sketch the following graphs, showing all intercepts with the axes and the vertex (the con-

stants a and b are positive, with b > a):

a) y = x2 − 6x + 8 b) y = 3− 2x − x2 c) y = x2 − 2x
d) y = 2x2 − 5x − 3 e) y = −3(x − 4)2 f) y = 12 + x − x2

g) y = x2 + 2ax h) y = (x − a)2 − b2

2. By sketching the graphs, determine the range of values of x for which each graph is below

the x-axis:

a) y = x2 + 2x − 1 b) y = 7− 6x − x2 c) y = x2 + 8x + 16

3. Find the equation of the parabola which:

a) crosses the x-axis at (1,0) and (5,0), and crosses the y-axis at (0,15),
b) crosses the x-axis at (−2,0) and (7,0) and crosses the y-axis at (0,−56),
c) passes through the points (−6,0), (−2,0) and (0,−6),
d) has a minimum value at (1,3) and passes through (4,39),
e) passes through the points (1,3), (5,3) and (2,6)

4∗. What is the equation of the quadratic passing through the points (1,0), (2,5) and (6,45)?

5∗. Use your sketch of y = x2 − 6x + 8 from Question 1 to sketch y = (x + k)2 − 6(x + k) + 8 for

2 < k < 4.
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3.8 Solving Inequalities

3.8.1. Notation and Algebra

We often want to compare one number with another and say which is the greater. This compar-

ison is expressed by using the inequality symbols >, <, ≤ and ≥. These symbols should already

be familiar.

• The symbol a < b means that a is less than b,

• the symbol a > b means that a is greater than b,

• the symbol a ≤ b means that a is less than or equal to b,

• the symbol a ≥ b means that a is greater than or equal to b.

Thus a < b and b > a mean the same thing. Similarly, a ≤ b and b ≥ a mean the same thing.

The symbols < and > are called strict inequalities, while the symbols ≤ and ≥ are called non-

strict inequalities.

We often wish to manipulate algebraic inequalities. When solving algebraic equations, we use a

number of techniques, which boil down to ‘do the same thing to both sides of the equation’. We

have almost the same amount of freedom with inequalities.

The rules for handling inequalities are easy to write down, but since they differ subtly from those

for equations, it is worth taking the time to see why they work. The simplest way to do this is to

note that all inequality statements are equivalent to statements about positive numbers:

a < b ⇔ b − a > 0
a ≤ b ⇔ b − a ≥ 0

and the positive numbers have the property that they remain positive when added together or

multiplied together:
c,d > 0 ⇒ c + d , cd > 0
c,d ≥ 0 ⇒ c + d , cd ≥ 0

From these observations we can deduce that following:

a < b ⇒ a+ c < b + c for any real c
a ≤ b ⇒ a+ c ≤ b + c for any real c
a < b ⇒ ad < bd for any d > 0
a ≤ b ⇒ ad ≤ bd for any d > 0
a < b ⇒ ae > be for any e < 0
a ≤ b ⇒ ae ≥ be for any e > 0

Key Fact 3.3 Operations on Inequalities

If a < b, then (b+c)−(a+c) = b−a > 0 and hence a+c < b+c. The second inequality follows similarly.

If a < b, then b − a > 0, and hence (for d > 0) bd − ad = (b − a)d > 0, so that ad < bd. The fourth

inequality follows similarly. The last two need care, since they state that when an inequality is

multiplied by a negative number, the sense of the inequality needs to be reversed. To see why

this is so, we note that −e > 0 when e < 0. Thus

a < b ⇒ −ae = (−e)a < (−e)b = −be ⇒ ae − be > 0 ⇒ ae > be

Thus we can manipulate inequalities in almost exactly the same way that we manipulate equa-

tions: we can add or subtract numbers to both sides, and can multiply both sides by positive

numbers. We just have to remember that multiplying both sides of an inequality by a negative

number reverses the sense of that inequality.

3.8.2. Solving Linear Inequalities

Solving many inequalities is simply a matter of exploiting the above rules, and using standard

algebra.

Example 3.8.1. Solve the inequality 1
3 (4x + 3)− 3(2x − 4) ≥ 20.
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We successively multiply both sides of the inequality by 3, subtract 39 from both sides,

and divide both sides by −14 to obtain the answer.

1
3 (4x + 3)− 3(2x − 4) ≥ 20

4x + 3− 9(2x − 4) ≥ 60
4x + 3− 18x + 36 ≥ 60

−14x + 39 ≥ 60
−14x ≥ 60− 39 = 21

x ≤ 21
−14 = −3

2

Figure 3.7

The series of operations performed is the same as would have been performed had

we been asked to solve the equation 1
3 (3x − 4) − 3(2x − 4) = 20. The only time we

need to take care is when multiplying by a number; the sign of that number has to be

considered, since it affects the sense of the inequality.

Exercise 3E

Solve the following inequalities.

1. a) x − 3 > 11 b) x + 7 < 11 c) 2x + 3 ≤ 8 d) 3x − 5 ≥ 16
e) 3x + 7 > −5 f) 5x + 6 ≤ −10 g) 2x + 3 < −4 h) 3x − 1 ≤ −13

2. a) x+3
2 > 5 b) x−4

6 ≤ 3 c) 2x+3
4 < −5 d) 3x+2

5 ≤ 4

e) 4x−3
2 ≥ −7 f) 5x+1

3 > −3 g) 3x−2
8 < 1 h) 4x−2

3 ≥ −6

3. a) x − 4 ≤ 5 + 2x b) x − 3 ≥ 5− x c) 2x + 5 < 4x − 7

d) 3x − 4 > 5− x e) 4x ≤ 3(2− x) f) 3x ≥ 5− 2(3− x)

g) 6x < 8− 2(7 + x) h) 5x − 3 > x − 3(2− x) i) 6− 2(x + 1) ≤ 3(1− 2x)

4. a) 1
3 (8x + 1)− 2(x − 3) > 10 b) 5

2 (x + 1)− 2(x − 3) < 7

c) 1
4 (x + 1) + 1

6 ≥
1
3 (2x − 5) d) 1

2x −
1
5 (3− 2x) ≤ 1

3.8.3. Quadratic Inequalities

Solving inequalities involving quadratics requires us to determine where some quadratic expres-

sion is positive or negative. The easiest way of handling these inequalities involves factorisation.

Example 3.8.2. Solve the inequality x2 − 6x + 8 < 0.

We sketch the curve of y = x2 − 6x + 8.

Since y = (x − 2)(x − 4), we see that the

graph crosses the x-axis at x = 2 and x = 4.

Since the curve is a ‘smile’, the vertex of

the curve lies below the x-axis, and we ob-

tain the sketch.

We now need to find on the graph where

y < 0. This occurs when x lies between 2
and 4, so when both x > 2 and x < 4.

Figure 3.8

Note that, since 2 < 4, it is acceptable to put these two inequalities together and write

the solution as 2 < x < 4. A solution set of this type is called an interval.

Example 3.8.3. Solve the inequality x2 ≤ 2x + 3.

42



CHAPTER 3. QUADRATICS AND INEQUALITIES

We sketch the curve of y = x2−2x−3. Since

y = (x + 1)(x − 3), we see that the graph

crosses the x-axis at x = −1 and x = 3.

Since the curve is a ‘smile’, the vertex of

the curve lies below the x-axis, and we ob-

tain the sketch.

We now need to find on the graph where

y ≤ 0. This occurs when either x ≤ −1 or

x ≥ 3.

Figure 3.9

However, since it is not true that 3 ≤ −1, we cannot put these two inequalities to-

gether and write 3 ≤ x ≤ −1. Another reason why we cannot do this is that the two

inequalities cannot be true at the same time — either one is true or the other. Writing

a single inequality implies that both inequalities are intended to be true at the same

time, as was the case in the previous example.

An alternative approach can solve these problems without sketching a graph, by simply deter-

mining the sign of the function for key values of x. This method is not as important in this case,

since we know the shapes of quadratic graphs, but will be very useful when we want to consider

more complex inequalities, involving cubic or worse expressions.

Example 3.8.4. Solve the inequality 5 + 4x − x2 ≤ 0.

Since 5 + 4x − x2 = (5− x)(1 + x), the function equals zero at x = 5 and x = −1. These

values of 5 and −1 are called the critical values of the function. Make a table showing

the signs of the factors in the product (5− x)(1 + x).

x < −1 x = −1 −1 < x < 5 x = 5 x > 5
5− x + + + 0 −
1 + x − 0 + + +

5 + 4x− x2 − 0 + 0 −

We see that the solution is x ≤ −1 or x ≥ 5 (the critical values are included, due to the

non-strict inequality).

Example 3.8.5. If a > 0, solve the inequality x2 ≤ a2.

We need to solve (x − a)(x + a) = x2 − a2 ≤ 0. The function x2 − a2 has critical values at

±a. We calculate a sign table

x < −a x = −a −a < x < a x = a x > a
x− a − − − 0 +
x + a − 0 + + +

x2 − a2 + 0 − 0 +

and so the solution is −a ≤ x ≤ a

This result is a precursor of discussions we shall have in the next chapter.

The following are equivalent (for a > 0):

x2 ≤ a2 ⇔ −a ≤ x ≤ a

x2 < a2 ⇔ −a < x < a

x2 ≥ a2 ⇔ x ≤ −a or x ≥ a

x2 > a2 ⇔ x < −a or x > a

Key Fact 3.4 Square Roots of Inequalities

Completing the square enables us to solve quadratic inequalities, even if the quadratics do not

factorise neatly.
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Example 3.8.6. Solve the inequalities: (a) 2x2 − 8x + 11 ≤ 0, (b) 2x2 − 10x + 7 ≤ 0.

(a) Completing the square tells us that 2x2−8x+11 = 2(x−2)2+3. Since it is a square, (x−2)2 ≥ 0
for all real x, and so 2x2−8x+11 ≥ 3 for all real x, so there are no solutions to the inequality

2x2 − 8x + 11 ≤ 0.

(b) Completing the square gives

2x2 − 10x + 7 ≤ 0

2
(
x − 5

2

)2 − 11
2 ≤ 0(

x − 5
2

)2 ≤ 11
4

and hence −1
2

√
11 ≤ x − 5

2 ≤
1
2

√
11, and so the solution is the interval

1
2 (5−

√
11) ≤ x ≤ 1

2 (5 +
√

11)

The properties of the discriminant can lead to solving quadratic inequalities.

Example 3.8.7. The quadratic 2x2 − kx + 50 has 2 real roots. What does this tell us about the

constant k?

This quadratic must have positive discriminant, and so k2 − 400 > 0, which tells us

that either k > 20 or k < −20.

Example 3.8.8. Solve the inequality x+3
5x−1 ≤

1
3 .

When solving equations of this type, our first instinct is to clear the denominators.

This creates a problem, because we do not know whether 5x − 1 is positive or not;

multiplying this inequality by 5x − 1 will change the direction of the inequality when

x < 1
5 . We avoid this problem by multiplying by (5x −1)2, which is always nonnegative.

Note that the original inequality only makes sense if x � 1
5 (otherwise we are being

asked to divide by 0), and so we may assume that (5x − 1)2 > 0 for all relevant values

of x.

Thus the inequality becomes, after multi-

plying by 3(5x − 1)2,

3(x + 3)(5x − 1) ≤ (5x − 1)2

(5x − 1)2 − 3(x + 3)(5x − 1) ≥ 0
2(5x − 1)(x − 5) ≥ 0

Figure 3.10

According to the sketch, we want the regions x ≤ 1
5 or x ≥ 5. However, we need to

remember that the original inequality excluded the possibility of x = 1
5 , and so we

must exclude that point from our solution. Thus the solution to the original inequality

is either x < 1
5 or x ≥ 5.

Note that this technique of multiplying by the square of the denominator automati-

cally creates a factor of 5x−1 in what follows. Do not make the mistake of multiplying

out both sides of the inequality, since you might lose track of the factor which this

method gives us for free!

An alternative approach would be to consider this inequality in cases, allowing for the

two possible signs of 5x − 1. Thus

• If x > 1
5 , the inequality becomes 3(x + 3) ≤ 5x − 1, or x ≥ 5.

• If x < 1
5 , the inequality becomes 3(x + 3) ≥ 5x − 1, or x ≤ 5.

Putting these two cases together we determine that the set of solutions is x < 1
5 or

x ≥ 5, as before.

44



CHAPTER 3. QUADRATICS AND INEQUALITIES

Exercise 3F

Solve the following inequalities. Give exact answers. Where necessary, assume that a and b are

positive, with a < b.

1. a) (x − 2)(x − 3) < 0 b) (x − 4)(x − 7) > 0 c) (x − 1)(x − 3) < 0
d) (x − 4)(x + 10) ≥ 0 e) (2x − 1)(x + 3) > 0 f) (3x − 2)(3x + 5) ≤ 0
g) (x + 2)(4x + 5) ≥ 0 h) (1− x)(3 + x) < 0 i) (3− 2x)(5− x) > 0
j) (x − 5)(x + 5) < 0 k) (3− 4x)(3x + 4) > 0 l) (2 + 3x)(2− 3x) ≤ 0

2. a) x2 + 3x − 5 > 0 b) x2 + 6x + 9 < 0 c) x2 − 5x + 2 < 0
d) x2 − x + 1 ≥ 0 e) x2 − 9 > 0 f) x2 + 2x + 1 ≤ 0
g) 2x2 − 3x − 1 < 0 h) 8− 3x − x2 > 0 i) 2x2 + 7x + 1 ≥ 0
j) x2 − (a+ b)x + ab > 0 k) x2 + (a− b)x − ab ≤ 0 l) x2 − ab < 0

3. a) x2 + 5x + 6 > 0 b) x2 − 7x + 12 < 0 c) x2 − 2x − 15 ≤ 0
d) 2x2 − 18 ≥ 0 e) 2x2 − 5x + 3 ≥ 0 f) 6x2 − 5x − 6 < 0
g) x2 + 5x + 2 > 0 h) 7− 3x2 < 0 i) x2 + ax + a2 < 0
j) x2 + ax − b < 0 k) 12x2 + 5x − 3 > 0 l) 3x2 − 7x + 1 ≤ 0

4. a) 4
x−7 ≤ 1 b) 12

x+4 > 2 c) 3 + 4
2x−3 < 0

d) 7− x
5−2x ≥ 0 e) x+2

7x+4 − 2 < 0 f) 7 + 5−x
x < 0

5. The quadratic equation kx2 + 6x + k = 0 has two real roots. What range of values of k are

possible?

6. The quadratic equation kx2 + (k + 1)x+ 2 = has no real roots. What range of values of k are

possible?

7. The quadratic equation kx2 + (k + 2)x+ (2k + 1) = 0 has no real roots. What range of values

of k are possible?

8∗. Solve the following inequalities, giving exact answers.

a) x3 − 7x2 + 10x < 0 b) 2+3x
4−x ≥ 2x c) x+3

x−3 + x+1
(x−2)2 ≤ 0

Chapter 3: Summary

• Every quadratic expression can be expressed in the form p(x + q)2 + r for some con-

stants p, q and r. The vertex of the quadratic curve y = p(x + q)2 + r occurs at the

point (−q, r).

• If p > 0, then r is the minimum value of the quadratic p(x + q)2 + r, and this value is

achieved at x = −q. If p < 0, then r is the maximum value of the quadratic p(x+q)2 +r,

and this value is achieved at x = −q.

• The quadratic equation ax2 + bx + c = 0 can be solved by factorisation, by use of the

quadratic formula

x =
−b ±

√
b2 − 4ac
2a

,

or by completing the square.

• The discriminant of the quadratic ax2 + bx + c is the quantity ∆ = b2 − 4ac. If ∆ > 0,

the equation ax2 + bx + c = 0 has two real roots; if ∆ = 0 this equation has one real

root; if ∆ < 0 this equation has no real roots.

• Inequalities, both quadratic and linear and even simultaneous, are best solved by

sketching the corresponding curves and considering their signs.
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Review Exercises 1

1. Express (OCR)5√
7

in the form k
√

7 where k is rational.

2. In the triangle PQR, Q is a right angle, PQ =
(
6−2
√

2
)

cm and QR =
(
6+2
√

2
)

cm. Find the

area of the triangle, and show that PR = 2
√

22 cm.

3. Simplify
3
√

36× 6
√

4
3 ×
√

27.

4. Write (
√

3)−3 + (
√

3)−2 + (
√

3)−1 + (
√

3)0 + (
√

3)1 + (
√

3)2 + (
√

3)3 in the form a+ b
√

3, where a,b
are rational.

5. If u = x − x−1 and v = x2 + x−2, find u(v + 1) in terms of x, giving your answer in its simplest

form.

6. Solve the simultaneous equations 5x − 3y = 41 and (7
√

2)x + (4
√

2)y = 82.

7. Express (OCR)(9a4)−
1
2 as an algebraic fraction in simplified form.

8. Show that the triangle formed by the points (−2,5), (1,3) and (5,9) is right-angled.

9. A triangle is formed by the points A (−1,3), B (5,7) and C (0,8).

a) Show that the angle ∠ACB is a right angle.

b) Find the coordinates of the point where the line through B parallel to AC cuts the

x-axis.

10. A (7,2) and C (1,4) are two vertices of a square ABCD.

a) Find the equation of the diagonal BD.

b) Find the coordinates of B and of D.

11. A quadrilateral ABCD is formed by the points A (−3,2), B (4,3), C (9,−2) and D (2,−3).

a) Show that all four sides are equal in length.

b) Show that ABCD is not a square.

12. P is the point (7,5) and �1 is the line with equation 3x + 4y = 16.

a) Find the equation of the line �2 which passes through P and is perpendicular to �1.

b) Find the point of intersection of the lines �1 and �2.

c) Find the perpendicular distance of P from the line �1.

13. Prove that the triangle with vertices (−2,8), (3,20) and (11,8) is isosceles. Find its area.

14. Find the equation of the perpendicular bisector of the line joining (2,−5) and (−4,3).

15. The points A (1,2), B (3,5), C (6,6) and D form a parallelogram. Find the coordinates of the

midpoint of AC. Use your answer to find the coordinates of D.
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16. The point P is the foot of the perpendicular from the point A (0,3) to the line y = 3x.

a) Find the equation of the line AP .

b) Find the coordinates of the point P .

c) Find the perpendicular distance of A from the line y = 3x.

17. Points which lie on the same straight line are called collinear. Show that the points (−1,3),
(4,7) and (−11,−5) are collinear.

18. Find the equation of the straight line that passes through the points (3,−1) and (−2,2),
giving your answer in the form ax + by + c = 0. Hence find the coordinates of the point of

intersection of the line and the x-axis. (OCR)

19. The coordinates of the points A and B are (3,2) and (4,−5) respectively. Find the coordi-

nates of the midpoint of AB, and the gradient of AB.

Hence find the equation of the perpendicular bisector of AB, giving your answer in the form

ax + by + c = 0, where a, b and c are integers. (OCR)

20. The curve y = 1 + 1
2+x crosses the x-axis at the point A and the y-axis at the point B.

a) Calculate the coordinates of A and of B.

b) Find the equation of the line AB.

c) Calculate the coordinates of the point of intersection of the line AB and the line with

equation 3y = 4x. (OCR)

21. The straight line p passes through the point (10,1) and is perpendicular to the line r with

equation 2x + y = 1. Find the equation of p.

Find also the coordinates of the point of intersection of p and r, and deduce the perpendic-

ular distance from the point (10,1) to the line r. (OCR)

22. The line 3x − 4y = 8 meets the y-axis at A. The point C has coordinates (−2,9). The line

through C perpendicular to 3x − 4y = 8 meets it at B. Calculate the area of the triangle

ABC.

23. The points A (−3,−4) and C (5,4) are the ends of the diagonal of a rhombus ABCD.

a) Find the equation of the diagonal BD.

b) Given that the side BC has gradient 5
3 , find the coordinates of B and hence of D.

24. Two lines have equations y = m1x + c1 and y = m2x + c2, where m1m2 = −1. Prove that the

lines are perpendicular.

25. Find (OCR)the values of x for which x
1
3 − 2x−

1
3 = 1.

26. Solve the equation 42x × 8x−1 = 32.

27. Given that 343n = 49n+2, find the value of n.

28. Solve the equation 1253x

5x+4 = 25x−2

3125 .

29. Solve the simultaneous (OCR)equations x + y = 2 and x2 + 2y2 = 11.

30. For what values of k does 2x2 − kx + 8 = 0 have a repeated root?

31. A rectangle has perimeter 16 cm and its area is at least 15 cm2. If one side of the rectangle

has length x cm, form a quadratic inequality in x, and find the set of possible values of x.

32. a) Solve the equation x2 − (6
√

3)x + 24 = 0 exactly.

b) Find (OCR, adapt.)all four solutions of the equation x4−(6
√

3)x2+24 = 0, giving your answers correct

to 2 decimal places.

33. Show that the line y = 3x − 3 and the curve y = (3x + 1)(x + 2) do not meet.

34. Find (OCR), correct to 3 significant figures, all the roots of the equation 8x4 − 8x2 + 1 = 1
2

√
3.

48



Review Exercises 1

35. The constant k is real, and the equation 10x2 + 8x + 1 = k(x2 + 2x) has one real root. Find

the range of values of k.

36. The equation of a curve is y = ax2 − 2bx + c, where a,b,c are constants with a > 0.

a) Find, in terms of a,b,c, the coordinates of the vertex of the curve.

b) Given that the vertex of the curve lies on the line y = x, find an expression for c in terms

of a and b. Show that, in this case, 4ac ≥ −1, irrespective (OCR, adapt.)of the value of b.

37. Solve (OCR)the inequality x(x + 1) < 12.

38. Solve the inequality x − x3 < 0.

39. Solve the inequality x3 ≥ 6x − x2.

40. Find (OCR)the set of values of x for which 9x2 + 12x + 7 > 19.

41∗. Let A and B have coordinates (p1, q1) and (p2, q2) respectively. Suppose that P is a point with

coordinates (x,y). Find the condition that must be satisfied by x and y if AP = PB. Hence

show that the locus of points equidistant from A and B is the perpendicular bisector of A
and B.

42∗. Find all real roots of the following equations:

a) x + 10
√
x + 2− 22 = 0,

b) x2 − 4x +
√

2x2 − 8x − 3− 9 = 0,

giving exact answers (STEP).

43∗. Given that

5x2 + 2y2 − 6xy + 4x − 4y = a(x − y + 2)2 + b(cx + y)2 + d

find the values of the constants a,b,c and d.

Solve the simultaneous equations (STEP)

5x2 + 2y2 − 6xy + 4x − 4y = 9 6x2 + 3y2 − 8xy + 8x − 8y = 14 .
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